## Bayes' Nets

 A Bayes' net is an efficient encoding of a probabilistic model of a domain



- Questions we can ask:
  - Inference: given a fixed BN, what is P(X | e)?
  - Representation: given a BN graph, what kinds of distributions can it encode?
  - Modeling: what BN is most appropriate for a given domain?

## Bayes' Net Semantics

- A set of nodes, one per variable X
- A directed, acyclic graph
- A conditional distribution for each node
  - A collection of distributions over X, one for each combination of parents' values

$$P(X|a_1 \ldots a_n)$$

- CPT: conditional probability table
- Description of a noisy "causal" process



A Bayes net = Topology (graph) + Local Conditional Probabilities

## Example: Alarm Network



| A  | 7          | P(J A) |
|----|------------|--------|
| +a | +j         | 0.9    |
| +a | · <u> </u> | 0.1    |
| ¬a | +j         | 0.05   |
| −a | −j         | 0.95   |

| A  | M  | P(M A) |
|----|----|--------|
| +a | +m | 0.7    |
| +a | −m | 0.3    |
| ¬a | +m | 0.01   |
| ¬a | −m | 0.99   |

| Ш  | P(E)  |
|----|-------|
| +e | 0.002 |
| –e | 0.998 |

| В  | Ε  | Α  | P(A B,E) |
|----|----|----|----------|
| +b | +e | +a | 0.95     |
| +b | +e | −a | 0.05     |
| +b | ¬e | +a | 0.94     |
| +b | ¬e | −a | 0.06     |
| ⊣b | +e | +a | 0.29     |
| ⊣b | +e | −a | 0.71     |
| ⊸b | ¬e | +a | 0.001    |
| ⊸b | ¬e | −a | 0.999    |

## Probabilities in BNs

For all joint distributions, we have (chain rule):

$$P(x_1, x_2, \dots x_n) = \prod_{i=1}^{n} P(x_i | x_1, \dots, x_{i-1})$$

- Bayes'nets implicitly encode joint distributions
  - As a product of local conditional distributions
  - To see what probability a BN gives to a full assignment, multiply all the relevant conditionals together:

$$P(x_1, x_2, \dots x_n) = \prod_{i=1}^n P(x_i | parents(X_i))$$

- This lets us reconstruct any entry of the full joint
- Not every BN can represent every joint distribution
  - The topology enforces certain conditional independencies

## Same Assumptions, Different Graphs?

- Can you have two different graphs that encode the same assumptions?
  - Yes!
  - Examples:

## Example: Independence

For this graph, you can fiddle with θ (the CPTs) all you want, but you won't be able to represent any distribution in which the flips are dependent!





## **Topology Limits Distributions**

- Given some graph topology G, only certain joint distributions can be encoded
- The graph structure guarantees certain (conditional) independences
- (There might be more independence)
- Adding arcs increases the set of distributions, but has several costs
- Full conditioning can encode any distribution



## Causality?

- When Bayes' nets reflect the true causal patterns:
  - Often simpler (nodes have fewer parents)
  - Often easier to think about
  - Often easier to elicit from experts
- BNs need not actually be causal
  - Sometimes no causal net exists over the domain
  - E.g. consider the variables *Traffic* and *Drips*
  - End up with arrows that reflect correlation, not causation
- What do the arrows really mean?
  - Topology may happen to encode causal structure
  - Topology only guaranteed to encode conditional independence
- \*More about causality: [Causility Judea Pearl]

## Changing Bayes' Net Structure

- The same joint distribution can be encoded in many different Bayes' nets
  - Causal structure tends to be the simplest

- Analysis question: given some edges, what other edges do you need to add?
  - One answer: fully connect the graph
  - Better answer: don't make any false conditional independence assumptions

## Example: Alternate Alarm



## Bayes Nets Representation Summary

- Bayes nets compactly encode joint distributions
- Guaranteed independencies of distributions can be deduced from BN graph structure
- Can analyze precise conditional independence guarantees from graph alone
- A Bayes' net's joint distribution may have further (conditional) independence that is not detectable until you inspect its specific distribution

## Inference

- Inference: calculating some useful quantity from a joint probability distribution
- Examples:
  - Posterior probability:

$$P(Q|E_1 = e_1, \dots E_k = e_k)$$

Most likely explanation:

$$\operatorname{argmax}_q P(Q = q | E_1 = e_1 \ldots)$$



## Inference by Enumeration

- Given unlimited time, inference in BNs is easy
- Recipe:
  - State the marginal probabilities you need
  - Figure out ALL the atomic probabilities you need
  - Calculate and combine them
- Example:

$$P(+b|+j,+m) = \frac{P(+b,+j,+m)}{P(+j,+m)}$$



## **Example: Enumeration**

In this simple method, we only need the BN to synthesize the joint entries

$$P(+b,+j,+m) =$$

$$P(+b)P(+e)P(+a|+b,+e)P(+j|+a)P(+m|+a) +$$

$$P(+b)P(+e)P(-a|+b,+e)P(+j|-a)P(+m|-a) +$$

$$P(+b)P(-e)P(+a|+b,-e)P(+j|+a)P(+m|+a) +$$

$$P(+b)P(-e)P(-a|+b,-e)P(+j|-a)P(+m|-a)$$

## Inference by Enumeration?



## Variable Elimination

- Why is inference by enumeration so slow?
  - You join up the whole joint distribution before you sum out the hidden variables
  - You end up repeating a lot of work!
- Idea: interleave joining and marginalizing!
  - Called "Variable Elimination"
  - Still NP-hard, but usually much faster than inference by enumeration
- We'll need some new notation to define VE

## Factor Zoo I

- Joint distribution: P(X,Y)
  - Entries P(x,y) for all x, y
  - Sums to 1

## Selected joint: P(x,Y)

- A slice of the joint distribution
- Entries P(x,y) for fixed x, all y
- Sums to P(x)

#### P(T,W)

| Т    | W    | Р   |
|------|------|-----|
| hot  | sun  | 0.4 |
| hot  | rain | 0.1 |
| cold | sun  | 0.2 |
| cold | rain | 0.3 |

#### P(cold, W)

| Т    | W    | Р   |
|------|------|-----|
| cold | sun  | 0.2 |
| cold | rain | 0.3 |

## Factor Zoo II

- Family of conditionals:
  P(X |Y)
  - Multiple conditionals
  - Entries P(x | y) for all x, y
  - Sums to |Y|

| P(W | T) |
|-----|----|
| •   |    |

| Т    | W    | Р   |                                               |
|------|------|-----|-----------------------------------------------|
| hot  | sun  | 8.0 | $\Big \Big\} \ P(W hot)$                      |
| hot  | rain | 0.2 |                                               |
| cold | sun  | 0.4 | $\left   ight. ight. ight. ight. = P(W cold)$ |
| cold | rain | 0.6 | $\begin{bmatrix} \end{bmatrix}$ T (VV  COLU)  |

- Single conditional: P(Y | x)
  - Entries P(y | x) for fixed x, all y
  - Sums to 1

| Т    | W    | Р   |
|------|------|-----|
| cold | sun  | 0.4 |
| cold | rain | 0.6 |

## Factor Zoo III

- Specified family: P(y | X)
  - Entries P(y | x) for fixed y, but for all x
  - Sums to ... who knows!

#### P(rain|T)

| Т    | W    | Р   |                                     |
|------|------|-----|-------------------------------------|
| hot  | rain | 0.2 | $\Big] P(rain hot)$                 |
| cold | rain | 0.6 | $\left  ight. ight.\} P(rain cold)$ |

- In general, when we write P(Y₁ ... YN | X₁ ... XM)
  - It is a "factor," a multi-dimensional array
  - Its values are all P(y<sub>1</sub> ... y<sub>N</sub> | x<sub>1</sub> ... x<sub>M</sub>)
  - Any assigned X or Y is a dimension missing (selected) from the array

## Example: Traffic Domain

#### Random Variables

R: Raining

T: Traffic

L: Late for class!

First query: P(L)







|    | ·               |          |
|----|-----------------|----------|
| +t | +               | 0.3      |
| +t | -l <sub>.</sub> | 0.7      |
| -t | +               | 0.1      |
| +  |                 | $\Omega$ |

P(L|R)

## Variable Elimination Outline

- Track objects called factors
- Initial factors are local CPTs (one per node)

$$P(R)$$
+r 0.1
-r 0.9

- Any known values are selected
  - E.g. if we know  $L = +\ell$  , the initial factors are

$$P(R)$$
+r 0.1
-r 0.9

VE: Alternately join factors and eliminate variables

## Operation 1: Join Factors

- First basic operation: joining factors
- Combining factors:
  - Just like a database join
  - Get all factors over the joining variable
  - Build a new factor over the union of the variables involved
- Example: Join on R



• Computation for each entry: pointwise products  $\forall r, t : P(r, t) = P(r) \cdot P(t|r)$ 

## Operation 1: Join Factors

- In general, we join on a variable
  - Take all factors mentioning that variable
  - Join them all together with pointwise products
  - Result is P(all LHS vars | all non-LHS vars)
  - Leave other factors alone
- Example: Join on T



## Example: Multiple Joins





| +r | 0.1 |
|----|-----|
| -r | 0.9 |



| +r | †<br>† | 8.0 |
|----|--------|-----|
| +r | -t     | 0.2 |
| -r | +t     | 0.1 |
| -r | -t     | 0.9 |

P(L|T)

| +t | <del>-</del> | 0.3 |
|----|--------------|-----|
| +t | -            | 0.7 |
| -t | +            | 0.1 |
| -t | -            | 0.9 |

#### Join R



P(R,T)

| +r | †  | 0.08 |
|----|----|------|
| +r | -t | 0.02 |
| -r | +t | 0.09 |
| -r | -t | 0.81 |



| +t | <del>-</del> | 0.3 |
|----|--------------|-----|
| +t | -            | 0.7 |
| -t | +            | 0.1 |
| -t | -            | 0.9 |

## Example: Multiple Joins

Join T



| $D_{l}$ | 'P   | T  |
|---------|------|----|
| 1       | (IU, | 1) |

| +r | †<br>† | 0.08 |
|----|--------|------|
| +r | †      | 0.02 |
| -r | †      | 0.09 |
| -r | -t     | 0.81 |



#### P(L|T)

| +t | +1 | 0.3 |
|----|----|-----|
| +t | I  | 0.7 |
| -t | +  | 0.1 |
| -t | -  | 0.9 |



#### P(R,T,L)

| +r     | +t | + | 0.024 |
|--------|----|---|-------|
| +r     | +t | - | 0.056 |
| r<br>+ | Ļ  | + | 0.002 |
| r<br>+ | -t | - | 0.018 |
| -r     | +t | + | 0.027 |
| -r     | +t | - | 0.063 |
| -r     | -t | + | 0.081 |
| -r     | -t | - | 0.729 |

## Operation 2: Eliminate

- Second basic operation: marginalization
- Take a factor and sum out a variable
  - Shrinks a factor to a smaller one
  - A projection operation
- Example:



## Multiple Elimination







| $\boldsymbol{\mathcal{D}}$ | I  | ?        | T | 7 | I                  | ١ |
|----------------------------|----|----------|---|---|--------------------|---|
| 1                          | (1 | $\iota,$ | 1 | , | $oldsymbol{L}_{j}$ | J |

| +r       | +t           | +            | 0.024 |
|----------|--------------|--------------|-------|
| r<br>+   | <del>Մ</del> | 1            | 0.056 |
| r<br>+   | Ļ            | <del>-</del> | 0.002 |
| <u>۲</u> | Ļ            | 1            | 0.018 |
| ۲        | <del>Մ</del> | <del>-</del> | 0.027 |
| ۲        | <del>+</del> | 1            | 0.063 |
| -r       | <del>'</del> | <del>-</del> | 0.081 |
| -r       | -t           | -            | 0.729 |



## P(L): Marginalizing Early!



| +r | 0.1 |
|----|-----|
| -r | 0.9 |

P(T|R)

+r

+t 0.8

#### Join R



#### Sum out R



| +r | +t | 0.08 |
|----|----|------|
| +r | †  | 0.02 |
| -r | †  | 0.09 |
| -r | -t | 0.81 |

## +t 0.17

| +1 | 0.17 |
|----|------|
| -t | 0.83 |

### P(L|T)

| +t | +1 | 0.3 |
|----|----|-----|
| +t | -  | 0.7 |
| -t | +  | 0.1 |
| -t | -1 | 0.9 |

## P(L|T)

| +t     | +1 | 0.3 |
|--------|----|-----|
| †<br>† | -  | 0.7 |
| -t     | 7  | 0.1 |
| _†     | _  | 0 9 |

## R, T P(L|T)

| +t | +1           | 0.3 |
|----|--------------|-----|
| +t | -            | 0.7 |
| -t | <del>-</del> | 0.1 |
| -t | -            | 0.9 |



28

## Marginalizing Early (aka VE\*)



<sup>\*</sup> VE is variable elimination

## Evidence

- If evidence, start with factors that select that evidence
  - No evidence uses these initial factors:

$$P(R)$$
+r 0.1
-r 0.9

$$P(T|R)$$
+r +t 0.8
+r -t 0.2
-r +t 0.1
-r -t 0.9

$$P(L|T)$$
 $\begin{array}{|c|c|c|c|c|} +t & +I & 0.3 \\ +t & -I & 0.7 \\ -t & +I & 0.1 \\ -t & -I & 0.9 \\ \end{array}$ 

• Computing P(L|+r), the initial factors become:

$$P(+r)$$

We eliminate all vars other than query + evidence

## Evidence II

- Result will be a selected joint of query and evidence
  - E.g. for  $P(L \mid +r)$ , we'd end up with:



- To get our answer, just normalize this!
- That's it!

## General Variable Elimination

- Query:  $P(Q|E_1 = e_1, \dots E_k = e_k)$
- Start with initial factors:
  - Local CPTs (but instantiated by evidence)
- While there are still hidden variables (not Q or evidence):
  - Pick a hidden variable H
  - Join all factors mentioning H
  - Eliminate (sum out) H
- Join all remaining factors and normalize

## Variable Elimination Bayes Rule

#### Start / Select

# P(B) B P +b 0.1 -b 0.9

#### $P(A|B) \rightarrow P(a|B)$

| В        | Α  | Р   |
|----------|----|-----|
| +b       | +a | 8.0 |
| D        | −a | 0.2 |
| b        | +a | 0.1 |
|          |    |     |
| $\neg$ 0 | a  | 0.9 |

#### Join on B



#### P(a,B)

| A  | В        | Р    |
|----|----------|------|
| +a | +<br>b   | 0.08 |
| +a | <u> </u> | 0.09 |

#### Normalize

| Α  | В  | P    |
|----|----|------|
| +a | +b | 8/17 |
| +a | ¬b | 9/17 |

## Example

$$P(B|j,m) \propto P(B,j,m)$$

$$P(B)$$
  $P(E)$   $P(A|B,E)$   $P(j|A)$   $P(m|A)$ 

#### Choose A

$$P(A|B,E)$$
 $P(j|A)$ 
 $P(m|A)$ 
 $P(j,m,A|B,E)$ 
 $P(j,m|B,E)$ 

$$P(B)$$
  $P(E)$   $P(j,m|B,E)$ 

## Example

#### Choose E



$$P(j, m, E|B)$$
  $\sum$   $P(j, m|B)$ 



#### Finish with B

$$P(B)$$
 $P(j,m|B)$ 





## Variable Elimination

- What you need to know:
  - Should be able to run it on small examples, understand the factor creation / reduction flow
  - Better than enumeration: saves time by marginalizing variables as soon as possible rather than at the end
- We will see special cases of VE later
  - On tree-structured graphs, variable elimination runs in polynomial time
  - You'll have to implement a tree-structured special case to track invisible ghosts (Project 4)