Bayes' Nets

= A Bayes netis an
efficient encoding
of a probabillistic
model of a domain

= Questions we can ask:
* Inference: given a fixed BN, what is P(X | e)?

* Representation: given a BN graph, what kinds of
distributions can it encode?

* Modeling: what BN is most appropriate for a given
domain?
This slide deck courtesy of Dan Klein at UC Berkeley



Bayes' Net Semantics

= A set of nodes, one per variable X
= A directed, acyclic graph

= A conditional distribution for each node

= A collection of distributions over X, one for
each combination of parents’ values

P(X|aq1...an)

= CPT: conditional probability table
= Description of a noisy “causal” process

A Bayes net = Topology (graph) + Local Conditional Probabilities



Example: Alarm Network
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Probabilities in BNs

= For all joint distributions, we have (chain rule):
P(z1,z2,...2zn) = || P(zilz1, .., 2i-1)
i=1

= Bayes’'nets implicitly encode joint distributions
= As a product of local conditional distributions
* To see what probability a BN gives to a full assignment, multiply

all the relevant conditionals together:
n
P(z1,x2,...zn) = || P(x;|parents(X;))
1=1

= This lets us reconstruct any entry of the full joint

= Not every BN can represent every joint distribution 4
* The topology enforces certain conditional independencies



Same Assumptions, Different Graphs?

= Can you have two different graphs that
encode the same assumptions?
" Yes!
= Examples:



Example: Independence

= For this graph, you can fiddle with 8 (the CPTs) all you
want, but you won’t be able to represent any distribution
iIn which the flips are dependent!

OO

P(X1) P(X5)

h 10.5 h 105
{ 1095 { 105

X711 X5

All distributions



Topology Limits Distributions

(X LY, X U ZY U Z, {(X U Z|Y}
Given some graph XUZ|YV,XIUY|ZY 1 Z|X}
topology G, only certain @
joint distributions can
be encoded ® @

The graph structure
guarantees certain
(conditional)
independences

(There might be more
independence)

Adding arcs increases
the set of distributions,
but has several costs

Full conditioning can E g

encode any distribution

3@3@ PP



Causality?

When Bayes’ nets reflect the true causal patterns:
= QOften simpler (nodes have fewer parents)
= Often easier to think about
= QOften easier to elicit from experts

BNs need not actually be causal
= Sometimes no causal net exists over the domain
= E.g. consider the variables Traffic and Drips
= End up with arrows that reflect correlation, not causation

What do the arrows really mean?
= Topology may happen to encode causal structure
= Topology only guaranteed to encode conditional independence

*More about causality: [Causility — Judea Pearl]



Changing Bayes’ Net Structure

= The same joint distribution can be
encoded in many different Bayes’ nets

= Causal structure tends to be the simplest

= Analysis question: given some edges,
what other edges do you need to add?
= One answer: fully connect the graph

= Better answer: don’t make any false
conditional independence assumptions



Example: Alternate Alarm
If we reverse the edges, we
Burglary Earthquake make different conditional
iIndependence assumptions

To capture the same joint
distribution, we have to add Burglary Earthquake
more edges to the graph :




Bayes Nets Representation Summary

= Bayes nets compactly encode joint distributions

* Guaranteed independencies of distributions can
be deduced from BN graph structure

= Can analyze precise conditional independence
guarantees from graph alone

= A Bayes' net’s joint distribution may have further
(conditional) independence that is not detectable
until you inspect its specific distribution 1



Inference

* |nference: calculating some
useful quantity from a joint
probability distribution

= Examples:
= Posterior probability:

P(Q|EL =e1,... B, = eg)

* Most likely explanation:
argmax, P(Q =q|E1 =ej...)

12



Inference by Enumeration

= Given unlimited time, inference in BNs is easy

= Recipe:

= State the marginal probabilities you need
= Figure out ALL the atomic probabilities you need

= Calculate and combine them

= Example:
P(+b] 4 j,+m) =

P<__b7 I]? Im)

P(+j,+m)

O
®ﬁ@ 13



Example: Enumeration

* |n this simple method, we only need the BN to
synthesize the joint entries

P(+b,4+j,+m) =
P(+b) P(+€) P(+a|+b, +¢) P(+j|+a) P(+m|+a)+
P(4b)P(4¢) P(—a|+b, +¢) P(+|—a) P(+m|—a)+
P(4b) P(—€) P(4a|+b, —) P(+j|+a) P(+m|+a)+
P(4b) P(—€) P(—a|+b, —e) P(+j|—a) P(+m| —a)

14



Inference by Enumeration?
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Variable Elimination

= Why is inference by enumeration so slow?

* You join up the whole joint distribution before you sum
out the hidden variables

* You end up repeating a lot of work!

= |dea: interleave joining and marginalizing!
= Called “Variable Elimination”

= Still NP-hard, but usually much faster than inference
by enumeration

= We'll need some new notation to define VE 16



Factor Zoo |

= Joint distribution: P(X,Y)
= Entries P(x,y) for all x, y
= Sumsto 1

= Selected joint: P(x,Y)
= A slice of the joint distribution
= Entries P(x,y) for fixed x, all y
= Sums to P(x)

P(T, W)

T W P
not | sun (0.4
not | rain | 0.1

cold | sun [0.2
cold | rain 10.3
P(cold, W)
T W P
cold | sun [0.2
cold | rain 10.3

17



Factor Zoo ||

= Family of conditionals: P(WIT)
PIXTY) T | WP
= Multiple conditionals |
not | sun [ 0.8 W
[ i B P( hOt)
Entries P(x | y) for all x, y hot ain 102]. |

= Sumsto |Y| -

cold | sun [0.4 L P(W|cold)

' cold | rain [0.6].
= Single conditional: P(Y | x) P(W|cold)
= Entries P(y | x) for fixed T W P
X, all'y
S cold | sun |04
= Sumsto 1

' cold | rain 0.6

18



Factor Zoo I

P(rain|T)
= Specified family: P(y | X
p o y: P(y _| ) - W =
= Entries P(y | x) for fixed y, _
but for all x hot ra!n 0.2
- Sumsto... whoknows! Lcold | rain [0.6]

|

= |In general, when we write P(Y, ... Y| X, ... X}))

= |tis a “factor,” a multi-dimensional array
= |ts values are all P(y, ... yy | X, --- Xy)

P(rain|hot)
P(rain|cold)

= Any assigned X or Y is a dimension missing (selected) from the array

19



Example: Traffic Domain

= Random Variables
= R: Raining
» T: Traffic
= L: Late for class!

= First query: P(L)

P(R)

+r (0.1
-r 10.9

P(T|R)

Fr]+

+r| -t

0
0
-r | +t 0.
- 0]

20



Variable Elimination Outline

= Track objects called factors
* |nitial factors are local CPTs (one per node)

P(R) P(T|R) P(L|T)
+r 0.1 +r | +t | 0.8 +t | +I [ 0.3
-r 0.9 +r| -t 10.2 +t | -1 [0.7
-r | +t | 0.1 -t | +1 | 0.1
-t 10.9 -t -1 10.9

= Any known values are selected
» Eg.ifwe know L= £ the initial factors are

P(R) P(T|R)  P(44T)
+r 0.1 +r | +t [ 0.8 +t [ +1 [ 0.3
-r 0.9 +r| -t [0.2 -t | +1 [0.1
-r | +t 0.1
-t 10.9

21
= VE: Alternately join factors and eliminate variables



Operation 1: Join Factors

= First basic operation: joining factors

= Combining factors:
= Just like a database join
= Get all factors over the joining variable
= Build a new factor over the union of the variables involved

= Example: Join on R

a P(R) x P(T|R) =—=> P(R,T)

-r [+t[0.09
-r | -t |0.81

+r 0.1 +r|+t|0.0 +r|+1/0.08
710.9]  [Fr[t[0.2 Fr[ =t [0.02
0.1
0.9

(1) b

= Computation for each entrv: pointwise obroducts

vr,t . P(r,t) = P(r) - P(t|r) 22




Operation 1: Join Factors

= |n general, we join on a variable
= Take all factors mentioning that variable
= Join them all together with pointwise products
= Resultis P(all LHS vars | all non-LHS vars)
= |eave other factors alone

= Example:Joinon T

@ P(R) P(T, L|R)
+r 0.1 Fr |+t +110.24
e Tt ariots (&)
Fr| -t [ +#10.
(1) P(LIR) P(LIT) Tt 1018
Fr[+ FE[+1031__ [ -r | ¥E [ +110.03
+r| -t 02|/t -T 0.7 r | ¥t [ -T |0.07 @
G T [FE0.I|[ € [FT10.1 o | -t | +110.09
|-t 0.9t -T 0.9 o =t [ -1 [0.81




P(R)

+r

0.1

-r

0.9

P(T|R)

+r

+t

0.8

+r

-

0.2

-r

+t

0.1

-r

-

0.9

P(L|T)

+|

0.3

0.7

+|

0.1

0.9

Join R
>

Example: Multiple Joins

P(R,T)

+r

+t

0.08

+r

-

0.02

-r

+1

0.09

-r

-

0.81

P(L|T)

+t

+|

0.3

0.7

+|

0.1

0.9
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Example: Multiple Joins

P(R,T)
+r][+t]0.08
P(R,T, L)
+r] -t 0.02 £
r | +t]0.09 : +r | +t| +1/0.024
T toer]  Jon T +r]+t] -1 [0.056
+r| -t | +1]0.002
—> +r| -t | -l [0.018
(L) P(L|IT) T [ +t]| +1]0.027
r [+t -1 [0.063
+t[+1]0.3
] -1]0.9




Operation 2: Eliminate

= Second basic operation: marginalization
* Take a factor and sum out a variable

= Shrinks a factor to a smaller one

= A projection operation
= Example:

P(R,T) (T
Tri+tlo.0og] Sum R (')

+r| -t [0.02] /> +t ]0.17

r | +t]/0.09 -t 10.83
r|{ -t 0.81




Multiple Elimination

P(R,T,L)
+r[+t] +1]0.024
+r|[+t] -1 [0.056
+r| -t [ +1]0.002
+r| -t [ -I [0.018
-r | +t[ +11]0.027
-r | +t| -l [0.063
-r | -t [ +1]0.081
-r | -t | -1 ]0.729

>

0.051

0.119

0.083

0.747

Sum
out T

W

P(L)

+|

0.134

0.886

27




P(L) : Marginalizing Early!

P(R)

+r

0.1

-r

0.9

P(T|R)

+r

+t

0.8

+r

-

0.2

-r

+t

0.1

-r

-

0.9

P(L|T)

0.3

0.7

0.1

0.9

Join R
>

Sum out R
P(R,T) P(T)
+r[+t]0.08
+r[ -t |0.02 +810.17
-r [+t]0.09 -t 10.83
-r |-t [0.81

P(L|T) @ P(L|T)

+t|+1]0.3 +t|+1]0.3
e (D) e
-t [+1]0.1 -t [+1]0.1
-t | -1 |0.9 -t|-1]0.9] =28




Marginalizing Early (aka VE™)
Join T @ @

Sumout T
P(T)
+t | 0.17 P(T, L)
t 1083 +t | +1 |0.051 P(L)
P(LIT) o +t] - 0.119ﬁ +1 10.134
l t | +11]0.083 -l 10.886
+t]+1/0.3 t | -1 |0.747
+t| -1 [0.7
-t | +1]0.1
t|-110.9

* VE is variable elimination



Evidence

= |f evidence, start with factors that select that evidence
= No evidence uses these initial factors:

P(R) P(T|R) P(L|T)
+r 0.1 +r | +t | 0.8 +t | +1 | 0.3
-r 0.9 +r| -t [0.2 +t | -1 10.7
- +t | 0.1 -t | +1 0.1

-t 10.9 -t -1 10.9

= Computing P(L|+ ) , the initial factors become:
P(+r)  P(T|+r)  PLIT)

+r 0.1 +r | +t 0.8 +t | +1 [ 0.3
+r| -t 10.2 +t | -1 [0.7

-t | +1 0.1

-t -1 10.9

= We eliminate all vars other than query + evidence



Evidence ||

= Result will be a selected joint of query and evidence
= E.g.for P(L | +r), we’'d end up with:

P(+r, L) Normalize P(L|+r)

+r|+1]0.026 +1{0.26
ol iloora] =7 1]0.74

= To get our answer, just normalize this!

* That's it!



General Variable Elimination

* Query: P(Q|E1 =e€1,...Er, = ep)

= Start with initial factors:
= |Local CPTs (but instantiated by evidence)

= While there are still hidden variables (not Q or evidence):
* Pick a hidden variable H
= Join all factors mentioning H
= Eliminate (sum out) H

= Join all remaining factors and normalize

32



Variable Elimination Bayes Rule

Start / Select

P(B)

B | P
+b [ 0.1

ap 0.9

P(A|B)—-P(a|B)

Join on B

Normalize

P(Bla)

+d

+b

8/17

B A

P

P(a, B)
A B P
+a | +b 1 0.08
+a | -b 10.09

+d

-b

917

+b +a

0.8

o] —a

0.2

-b +a

0.1

—|L) —d

0.9

33




Example

P(B|j,m) < P(B,j,m)

P(B) P(E) P(A[B, E) P(jlA)  P(m|A)

Choose A
P(A|B,E)

P(j|A) X > P(,m,AlB,E) [¥ > P(,m|B,E)

P(m|A)

P(B) P(E) P(j,m|B, E)

34



Example

P(B) P(E) P(j,m|B, E)
Choose E
PLE) :x > P(j,m, E|B) jz > P(j,m|B)
P(j,m|B, F)
P(B) P(j,m|B)
Finish with B
P(B)

P(j,m|B)

X > P(j,m,B) Normalize > P(B|j,m)

35



Variable Elimination

= What you need to know:

= Should be able to run it on small examples, understand the
factor creation / reduction flow

= Better than enumeration: saves time by marginalizing
variables as soon as possible rather than at the end

= We will see special cases of VE later

= On tree-structured graphs, variable elimination runs in
polynomial time

= You'll have to implement a tree-structured special case to
track invisible ghosts (Project 4)
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