Inference

* |nference: calculating some
useful quantity from a joint °
probability distribution

= Examples:
= Posterior probability:

P(Q|EL =e1,... B, = eg) i i

* Most likely explanation:
argmax, P(Q =q|E1 =ej...)

This slide deck courtesy of Dan Klein at UC Berkeley



Inference by Enumeration

= Given unlimited time, inference in BNs is easy
= Recipe:

= State the marginal probabilities you need

= Figure out ALL the atomic probabilities you need

= Calculate and combine them
= Example: @
P(+b| + j,+m) =

P(4+b, 45, +m) /‘ :>\
P(+7, +m) @ @ |




Example: Enumeration

* |n this simple method, we only need the BN to
synthesize the joint entries

P(+b,4+j,+m) =
P(+b) P(+€) P(+a|+b, +¢) P(+j|+a) P(+m|+a)+
P(4b)P(4¢) P(—a|+b, +¢) P(+|—a) P(+m|—a)+
P(4b) P(—€) P(4a|+b, —) P(+j|+a) P(+m|+a)+
P(4b) P(—€) P(—a|+b, —e) P(+j|—a) P(+m| —a)




Inference by Enumeration?

eBase(C AntiTheft




Variable Elimination

= Why is inference by enumeration so slow?

* You join up the whole joint distribution before you sum
out the hidden variables

* You end up repeating a lot of work!

= |dea: interleave joining and marginalizing!
= Called “Variable Elimination”

= Still NP-hard, but usually much faster than inference
by enumeration

= We'll need some new notation to define VE 5



Factor Zoo |

= Joint distribution: P(X,Y)
= Entries P(x,y) for all x, y
= Sumsto 1

= Selected joint: P(x,Y)
= A slice of the joint distribution
= Entries P(x,y) for fixed x, all y
= Sums to P(x)

P(T, W)

T W P
not | sun (0.4
not | rain | 0.1

cold | sun [0.2
cold | rain 10.3
P(cold, W)
T W P
cold | sun [0.2
cold | rain 10.3




Factor Zoo ||

= Family of conditionals: P(WIT)
PIXTY) T | WP
= Multiple conditionals |
not | sun [ 0.8 W
[ i B P( hOt)
Entries P(x | y) for all x, y hot ain 102]. |

= Sumsto |Y| -

cold | sun [0.4 L P(W|cold)

 cold | rain [0.6].
= Single conditional: P(Y | x) P(W|cold)
= Entries P(y | x) for fixed T W P
X, all'y

cold | sun (0.4
| cold | rain 10.6

= Sums to 1




Factor Zoo I

P(rain|T)
= Specified family: P(y | X
p o y: P(y _| ) - W =
= Entries P(y | x) for fixed y, _
but for all x hot ra!n 0.2
- Sumsto... whoknows! Lcold | rain [0.6]

|

= |In general, when we write P(Y, ... Y| X, ... X}))

= |tis a “factor,” a multi-dimensional array
= |ts values are all P(y, ... yy | X, --- Xy)

P(rain|hot)
P(rain|cold)

= Any assigned X or Y is a dimension missing (selected) from the array



Example: Traffic Domain

= Random Variables
= R: Raining
» T: Traffic
= L: Late for class!

= First query: P(L)

P(R)

+r (0.1
-r 10.9

P(T|R)

Fr]+

+r| -t

0
0
-r | +t 0.
- 0]




Variable Elimination Outline

= Track objects called factors
* |nitial factors are local CPTs (one per node)

P(R) P(T|R) P(L|T)
+r 0.1 +r | +t | 0.8 +t | +I [ 0.3
-r 0.9 +r| -t 10.2 +t | -1 [0.7
-r | +t | 0.1 -t | +1 | 0.1
-t 10.9 -t -1 10.9

= Any known values are selected
» Eg.ifwe know L= £ the initial factors are

P(R) P(T|R)  P(44T)
+r 0.1 +r | +t [ 0.8 +t [ +1 [ 0.3
-r 0.9 +r| -t [0.2 -t | +1 [0.1
-r | +t 0.1
-t 10.9

10
= VE: Alternately join factors and eliminate variables



Operation 1: Join Factors

= First basic operation: joining factors

= Combining factors:
= Just like a database join
= Get all factors over the joining variable
= Build a new factor over the union of the variables involved

= Example: Join on R

a P(R) x P(T|R) =—=> P(R,T)

-r [+t[0.09
-r | -t |0.81

+r 0.1 +r|+t|0.0 +r|+1/0.08
710.9]  [Fr[t[0.2 Fr[ =t [0.02
0.1
0.9

(1) b

= Computation for each entrv: pointwise obroducts

vr,t . P(r,t) = P(r) - P(t|r) 11




Operation 1: Join Factors

= |n general, we join on a variable
= Take all factors mentioning that variable
= Join them all together with pointwise products
= Resultis P(all LHS vars | all non-LHS vars)
= |eave other factors alone

= Example:Joinon T

@ P(R) P(T, L|R)
+r 0.1 Fr |+t +110.24
e Tt ariots (&)
Fr| -t [ +#10.
(1) P(LIR) P(LIT) Tt 1018
Fr[+ FE[+1031__ [ -r | ¥E [ +110.03
+r| -t 02|/t -T 0.7 r | ¥t [ -T |0.07 @
G T [FE0.I|[ € [FT10.1 o | -t | +110.09
|-t 0.9t -T 0.9 o =t [ -1 [0.81




P(R)

+r

0.1

-r

0.9

P(T|R)

+r

+t

0.8

+r

-

0.2

-r

+t

0.1

-r

-

0.9

P(L|T)

+|

0.3

0.7

+|

0.1

0.9

Join R
>

Example: Multiple Joins

P(R,T)

+r

+t

0.08

+r

-

0.02

-r

+1

0.09

-r

-

0.81

P(L|T)

+t

+|

0.3

0.7

+|

0.1

0.9

13



Example: Multiple Joins

P(R,T)
+r][+t]0.08
P(R,T, L)
+r] -t 0.02 £
r | +t]0.09 : +r | +t| +1/0.024
T toer]  Jon T +r]+t] -1 [0.056
+r| -t | +1]0.002
—> +r| -t | -l [0.018
(L) P(L|IT) T [ +t]| +1]0.027
r [+t -1 [0.063
+t[+1]0.3
] -1]0.9




Operation 2: Eliminate

= Second basic operation: marginalization
* Take a factor and sum out a variable

= Shrinks a factor to a smaller one

= A projection operation
= Example:

P(R,T) (T
Tri+tlo.0og] Sum R (')

+r| -t [0.02] /> +t ]0.17

r | +t]/0.09 -t 10.83
r|{ -t 0.81




Multiple Elimination

P(R,T,L)
+r[+t] +1]0.024
+r|[+t] -1 [0.056
+r| -t [ +1]0.002
+r| -t [ -I [0.018
-r | +t[ +11]0.027
-r | +t| -l [0.063
-r | -t [ +1]0.081
-r | -t | -1 ]0.729

>

0.051

0.119

0.083

0.747

Sum
out T

W

P(L)

+|

0.134

0.886

16




P(L) : Marginalizing Early!

P(R)

+r

0.1

-r

0.9

P(T|R)

+r

+t

0.8

+r

-

0.2

-r

+t

0.1

-r

-

0.9

P(L|T)

0.3

0.7

0.1

0.9

Join R
>

Sum out R
P(R,T) P(T)
+r[+t]0.08
+r[ -t |0.02 +810.17
-r [+t]0.09 -t 10.83
-r |-t [0.81

P(L|T) @ P(L|T)

+t|+1]0.3 +t|+1]0.3
e (D) e
-t [+1]0.1 -t [+1]0.1
-t | -1 |0.9 -t -110.9] 17




Marginalizing Early (aka VE™)
Join T @ @

Sumout T
P(T)
+t | 0.17 P(T, L)
t 1083 +t | +1 |0.051 P(L)
P(LIT) o +t] - 0.119ﬁ +1 10.134
l t | +11]0.083 -l 10.886
+t]+1/0.3 t | -1 |0.747
+t| -1 [0.7
-t | +1]0.1
t|-110.9

* VE is variable elimination



Evidence

= |f evidence, start with factors that select that evidence
= No evidence uses these initial factors:

P(R) P(T|R) P(L|T)
+r 0.1 +r | +t | 0.8 +t | +1 | 0.3
-r 0.9 +r| -t [0.2 +t | -1 10.7
- +t | 0.1 -t | +1 0.1

-t 10.9 -t -1 10.9

= Computing P(L|+ ) , the initial factors become:
P(+r)  P(T|+r)  PLIT)

+r 0.1 +r | +t 0.8 +t | +1 [ 0.3
+r| -t 10.2 +t | -1 [0.7

-t | +1 0.1

-t -1 10.9

= We eliminate all vars other than query + evidence



Evidence ||

= Result will be a selected joint of query and evidence
= E.g.for P(L | +r), we’'d end up with:

P(+r, L) Normalize P(L|+r)

+r|+1]0.026 +1{0.26
ol iloora] =7 1]0.74

= To get our answer, just normalize this!

* That's it!



General Variable Elimination

* Query: P(Q|E1 =e€1,...Er, = ep)

= Start with initial factors:
= |Local CPTs (but instantiated by evidence)

= While there are still hidden variables (not Q or evidence):
* Pick a hidden variable H
= Join all factors mentioning H
= Eliminate (sum out) H

= Join all remaining factors and normalize

21



Variable Elimination Bayes Rule

Start / Select

P(B)

B | P
+b [ 0.1

ap 0.9

P(A|B)—-P(a|B)

Join on B

Normalize

P(Bla)

+d

+b

8/17

B A

P

P(a, B)
A B P
+a | +b 1 0.08
+a | -b 10.09

+d

-b

917

+b +a

0.8

o] —a

0.2

-b +a

0.1

—|L) —d

0.9

22




Example

P(B|j,m) < P(B,j,m)

P(B) P(E) P(A[B, E) P(jlA)  P(m|A)

Choose A
P(A|B,E)

P(j|A) X > P(,m,AlB,E) [¥ > P(,m|B,E)

P(m|A)

P(B) P(E) P(j,m|B, E)

23



Example

P(B) P(E) P(j,m|B, E)
Choose E
PLE) :x > P(j,m, E|B) jz > P(j,m|B)
P(j,m|B, F)
P(B) P(j,m|B)
Finish with B
P(B)

P(j,m|B)

X > P(j,m,B) Normalize > P(B|j,m)

24



Variable Elimination

= What you need to know:

= Should be able to run it on small examples, understand the
factor creation / reduction flow

= Better than enumeration: saves time by marginalizing
variables as soon as possible rather than at the end

= We will see special cases of VE later

= On tree-structured graphs, variable elimination runs in
polynomial time

= You'll have to implement a tree-structured special case to
track invisible ghosts (Project 4)



Approximate Inference

Simulation has a name: sampling G
Sampling is a hot topic in machine learning,
and it's really simple 9
Basic idea:

= Draw N samples from a sampling distribution S

= Compute an approximate posterior probability a

= Show this converges to the true probability P

Why sample?
= |earning: get samples from a distribution you don’t know

* |nference: getting a sample is faster than computing the right
answer (e.g. with variable elimination) 26



P(S|C)

+C

+S

0.1

0.9

+S

0.5

0.5

Prior Sampling

P(W|S, R)

P(C)
+c | 0.5
-c | 0.5

+S

+r

+w

0.99

0.01

+W

0.90

0.10

+r

+wW

0.90

0.10

+WwW

0.01

0.99

P(R|C)

+c|+r|0.8

Samples:

+C, -S, +I, +W
-C, +S, I, +W

27



Prior Sampling

= This process generates samples with probability:
Sps(z1...zn) = || P(x;|Parents(X;)) = P(z1...zn)

1=1
...1.e. the BN’s joint probability

= et the number of samples of an event be Nps(z1...zn)

= Then lim P(:Cl,...,icn) lim Nps(xl,...,:cn)/N

N —00 N —00
= P(x1...21n)

= |.e., the sampling procedure is consistent 08



Example

= First: Get a bunch of samples from the BN:
+C, -S, +I, +W
+C, +S, +I, +W
-C, +S, +I, -W
+C, -S, +I, +W
-C, -S, -, +W
= Example: we want to know P(W)
= We have counts <+w:4, -w:1>
* Normalize to get approximate P(W) = <+w:0.8, -w:0.2>
= This will get closer to the true distribution with more samples
= (Can estimate anything else, too
= What about P(C| +w)? P(C| +r, +w)? P(C| -r, -w)?

* Fast: can use fewer samples if less time (what’s the drawback?) ”



Rejection Sampling

= Let’'s say we want P(C)
* No point keeping all samples around
= Just tally counts of C as we go

= | et’'s say we want P(C| +s)

+C, -S, +I, +W

= Same thing: tally C outcomes, but +C, +S, +1, +W
ignore (reject) samples which don't "C, +5, 41, -W
have S=+S +C, -S, +I, +W

o o _ -C, -S, -I, +W
* This is called rejection sampling
* |t is also consistent for conditional

probabilities (i.e., correct in the limit) 20



Sampling Example

= There are 2 cups.
= The first contains 1 penny and 1 quarter
* The second contains 2 quarters

= Say | pick a cup uniformly at random, then pick a
coin randomly from that cup. It's a quarter (yes!).
What is the probability that the other coin in that
cup is also a quarter?



Likelihood Welighting

Problem with rejection sampling:
= |f evidence is unlikely, you reject a lot of samples

* You don’t exploit your evidence as you sample b, -a
= Consider P(Bl+a) b, -a
-b, -a
+b, +a
Idea: fix evidence variables and sample the rest b 43

-b, +a
Burglary b, +a
-b, +a

+b, +a
Problem: sample distribution not consistent!

Solution: weight by probability of evidence given parents 32



Likelihood Welighting

P(S|C)

+C

+S

0.1

0.9

+S

0.5

0.5

P(W|S, R)

+S

+r

+w

0.99

0.01

+W

0.90

0.10

+r

+wW

0.90

0.10

+WwW

0.01

0.99

PC)
+c | 0.5
-c | 0.5

P(R|C)

+c| +r|0.8

-r 10.2

c|+r|0.2

-r |10.8

Samples:

+C, +S, +I, +W

w=1.0x0.1x0.99

33



Likelihood Welighting

= Sampling distribution if z sampled and e fixed evidence

[

Sws(z,e) = || P(z;|Parents(Z;))
i=1

= Now, samples have weights
m

w(z,e) = || P(e;|Parents(E;))
i=1

= Together, weighted sampling distribution is consistent
[ m
Sws(z,€) - w(z,e) = | | P(zi|Parents(z;)) | [ P(e;|Parents(e;))
=1 1=1

= P(z,e) 34



Likelihood Welighting

= Likelihood weighting is good
* We have taken evidence into account as
we generate the sample

= E.g. here, W’s value will get picked
based on the evidence values of S, R

* More of our samples will reflect the state
of the world suggested by the evidence
= Likelihood weighting doesn’t solve
all our problems

= Evidence influences the choice of
downstream variables, but not upstream
ones (C isn’t more likely to get a value
matching the evidence)

= We would like to consider evidence
when we sample every variable

35



Markov Chain Monte Carlo”*

Idea: instead of sampling from scratch, create samples that are
each like the last one.

Procedure: resample one variable at a time, conditioned on all the
rest, but keep evidence fixed. E.g., for P(B|+c):

() (D) (DL

Properties: Now samples are not independent (in fact they’'re nearly
identical), but sample averages are still consistent estimators!

What's the point. both upstream and downstream variables
condition on evidence.

36
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