CS344M Autonomous Multiagent Systems

Prof: Peter Stone

Department of Computer Science The University of Texas at Austin

Good Afternoon, Colleagues

Are there any questions?

Good Afternoon, Colleagues

Are there any questions?

- FCC: did they acheive "bundles"?
- FCC: what was the "optimal" strategy?

Good Afternoon, Colleagues

Are there any questions?

- FCC: did they acheive "bundles"?
- FCC: what was the "optimal" strategy?
- What's new in TAC?
- Do algorithms scale with more clients?
- Was TAC SCM more successful?

Logistics

- FAI talk on Friday
 - Jeopardy agent (Fri., 11am 2.302)

Logistics

- FAI talk on Friday
 - Jeopardy agent (Fri., 11am 2.302)
- Final tournament: Monday 12/13, 9-noon

Logistics

- FAI talk on Friday
 - Jeopardy agent (Fri., 11am 2.302)
- Final tournament: Monday 12/13, 9-noon
- Peer review process thoughts?

FCC Spectrum Auction #35

- 422 licences in 195 markets (cities)
 - 80 bidders spent \$8 billion
 - ran Dec 12 Jan 26 2001
 - licence is a 10 or 15 mhz spectrum chunk
- Run in rounds
 - bid on each licence you want each round
 - simultaneous; break ties by arrival time
 - current winner and all bids are known
- Allowable bids: 1 to 9 bid increments
 - 1 bid incr is 10% 20% of current price
- Other complex rules

Model

- Agent goals
 - desire 0, 1, or 2 licences per market
 - desired markets have unique values
 - subject to budget constraint

Assumption: no inter-market value dependencies

- Utility is profit: $\Sigma_l(value-cost)$
- modeled 5 most important bidders
 - others served mainly to raise prices
 - modeled as several small bidders
 - lower valuations (75% → pessimistic)

Bidding Strategies

- Considering self only
 - Knapsack
 - best self-only approach
- Strategic bidding (consider others)
 - threats
 - budget stretching
 - Strategic Demand Reduction (SDR)

Explicit communication not allowed

Randomized SDR

Figure out allocations dynamically

- round 1: bid for everything you want
- first big bidder winning bid owns licence
- satisfaction = owned value / desired value

Random ⇒ uneven allocation

- get small share ⇒ incentive to cheat
- fair: own satisfaction close to average
- if unlucky, take licences until fair

Small bidders take licences from owners

- remember licence's owner
- allocate while small bidders active

RSDR vs. Knapsack

Method	Agent	Profit (\$M)		Ratio	Cost
Knapsack	0	980	(±170)	1.00	.82
	1	650	(±85)	1.00	.82
	2	830	(±91)	1.00	.84
	3	170	(±20)	1.00	.84
	4	550	(±96)	1.00	.86
RSDR	0	1240	(±210)	1.26	.76
	1	820	(±83)	1.25	.77
	2	1300	(±290)	1.58	.74
	3	300	(±44)	1.78	.79
	4	930	(±240)	1.68	.76

44% more profit; avg. ratio 1.51

Robustness

- What if someone cheats?
 - cheat: defect back to knapsack
 - others stay out of its way \Rightarrow big win
- Solution: Punishing RSDR (PRSDR)
 - cheater takes your licence ⇒ take it back
 - take it back first while still have money
 - aggressively punitive: skips optimizers

Simplification: pointing out cheaters by hand

Robustness

Method	Ratio	Cost
Knapsack	1.00	.84
RSDR	1.51	.76
RSDR Cheater	1.63	.76
RSDR Victim	1.22	.79
PRSDR Cheater	1.02	.83
PRSDR Enforcer	1.17	.81

Extensions

Change small bidder valuations

- test robustness
- RSDR is optimal for preserving profit

Multiple cheaters

- current punishment too aggressive
- collapse back to knapsack instead

Extentions

Method	Ratio	Local Ratio	Cost
Multiple Cheater	1.03	1.03	.84
Multiple Enforcer	1.01	1.01	.83
50% Knapsack	1.70	1.00	.74
50% RSDR	3.42	2.02	.51
75% Knapsack	1.00	1.00	.84
75% RSDR	1.51	1.51	.76
85% Knapsack	0.68	1.00	.89
85% RSDR	0.81	1.25	.87

Future Work

- Robustness enhancements
 - better punishment method
- More complex value functions
 - inter-market dependencies
- Automatic cheater detection
 - partial cheating vs. detection arms race
 - smack back into compliance
- Generalization to other auctions
 - more robust to tie-breaking procedure variations

Summary

- Communication-free coordination
- Enables much higher profits
- Works even uncertain knowledge
- Real-world functionality relies on simple assumptions:

Summary

- Communication-free coordination
- Enables much higher profits
- Works even uncertain knowledge
- Real-world functionality relies on simple assumptions:
 - bidders want more profit
 - bidders familiar with PRSDR and its benefits
 - bidders willing to try it risk-free

Trading Agent Competition

- Put forth as a benchmark problem for e-marketplaces (Wellman, Wurman, et al., 2000)
- Autonomous agents act as travel agents

Trading Agent Competition

- Put forth as a benchmark problem for e-marketplaces (Wellman, Wurman, et al., 2000)
- Autonomous agents act as travel agents
 - Game: 8 agents, 12 min.
 - Agent: simulated travel agent with 8 clients
 - Client: TACtown → Tampa within 5-day period

Trading Agent Competition

- Put forth as a benchmark problem for e-marketplaces (Wellman, Wurman, et al., 2000)
- Autonomous agents act as travel agents
 - Game: 8 agents, 12 min.
 - Agent: simulated travel agent with 8 clients
 - Client: TACtown → Tampa within 5-day period
- Auctions for flights, hotels, entertainment tickets
 - Server maintains markets, sends prices to agents
 - Agent sends bids to server over network

28 Simultaneous Auctions

Flights: Inflight days 1-4, Outflight days 2-5 (8)

 Unlimited supply; prices tend to increase; immediate clear; no resale

28 Simultaneous Auctions

Flights: Inflight days 1-4, Outflight days 2-5 (8)

 Unlimited supply; prices tend to increase; immediate clear; no resale

Hotels: Tampa Towers/Shoreline Shanties days 1-4 (8)

- 16 rooms per auction; 16th-price ascending auction; quote is ask price; no resale
- Random auction closes minutes 4 11

28 Simultaneous Auctions

Flights: Inflight days 1-4, Outflight days 2-5 (8)

 Unlimited supply; prices tend to increase; immediate clear; no resale

Hotels: Tampa Towers/Shoreline Shanties days 1-4 (8)

- 16 rooms per auction; 16th-price ascending auction; quote is ask price; no resale
- Random auction closes minutes 4 11

Entertainment: Wrestling/Museum/Park days 1-4 (12)

 Continuous double auction; initial endowments; quote is bid-ask spread; resale allowed

Client Preferences and Utility

Preferences: randomly generated per client

- Ideal arrival, departure days
- Good Hotel Value
- Entertainment Values

Client Preferences and Utility

Preferences: randomly generated per client

- Ideal arrival, departure days
- Good Hotel Value
- Entertainment Values

Utility: 1000 (if valid) – travel penalty + hotel bonus

+ entertainment bonus

Client Preferences and Utility

Preferences: randomly generated per client

- Ideal arrival, departure days
- Good Hotel Value
- Entertainment Values

Utility: 1000 (if valid) – travel penalty + hotel bonus

+ entertainment bonus

Score: Sum of client utilities – expenditures

```
G \equiv \text{complete} \text{ allocation of goods to clients} v(G) \equiv \text{utility of } G - \text{cost of needed goods} G^* \equiv \text{argmax } v(G)
```

```
G \equiv \text{complete} allocation of goods to clients
```

```
v(G) \equiv \text{utility of } G - \text{cost of needed goods}
```

$$G^* \equiv \operatorname{argmax} v(G)$$

Given holdings and prices, find G^*

```
G \equiv \text{complete} \text{ allocation of goods to clients} v(G) \equiv \text{utility of } G - \text{cost of needed goods} G^* \equiv \text{argmax } v(G)
```

Given holdings and prices, find G^*

- General allocation NP-complete
 - Tractable in TAC: mixed-integer LP (ATTac-2000)
 - Estimate $v(G^*)$ quickly with LP relaxation

```
G \equiv \text{complete allocation of goods to clients}
```

$$v(G) \equiv \text{utility of } G - \text{cost of needed goods}$$

$$G^* \equiv \operatorname{argmax} v(G)$$

Given holdings and prices, find G^*

- General allocation NP-complete
 - Tractable in TAC: mixed-integer LP (ATTac-2000)
 - Estimate $v(G^*)$ quickly with LP relaxation

Prices known $\Rightarrow G^*$ known \Rightarrow optimal bids known

Learn model of expected hotel price

Learn model of expected hotel price distributions

- Learn model of expected hotel price distributions
- For each auction:
 - Repeatedly sample price vector from distributions

- Learn model of expected hotel price distributions
- For each auction:
 - Repeatedly sample price vector from distributions
 - Bid avg marginal expected utility: $v(G_w^*) v(G_l^*)$

High-Level Strategy

- Learn model of expected hotel price distributions
- For each auction:
 - Repeatedly sample price vector from distributions
 - Bid avg marginal expected utility: $v(G_w^*) v(G_l^*)$
- ullet Bid for all goods not just those in G^*

High-Level Strategy

- Learn model of expected hotel price distributions
- For each auction:
 - Repeatedly sample price vector from distributions
 - Bid avg marginal expected utility: $v(G_w^*) v(G_l^*)$
- ullet Bid for all goods not just those in G^*

Goal: analytically calculate optimal bids

Features:

- Current hotel and flight prices
- Current time in game
- Hotel closing times
- Agents in the game (when known)
- Variations of the above

Features:

- Current hotel and flight prices
- Current time in game
- Hotel closing times
- Agents in the game (when known)
- Variations of the above

Data:

Hundreds of seeding round games

Features:

- Current hotel and flight prices
- Current time in game
- Hotel closing times
- Agents in the game (when known)
- Variations of the above

Data:

- Hundreds of seeding round games
- Assumption: similar economy

Features:

- Current hotel and flight prices
- Current time in game
- Hotel closing times
- Agents in the game (when known)
- Variations of the above

Data:

- Hundreds of seeding round games
- Assumption: similar economy
- Features → actual prices

- $X \equiv \text{feature vector} \in \mathbb{R}^n$
- $Y \equiv \text{closing price} \text{current price} \in \mathbb{R}$

- $X \equiv \text{feature vector} \in \mathbb{R}^n$
- $Y \equiv \text{closing price} \text{current price} \in \mathbb{R}$
- Break Y into $k \approx 50$ cut points $b_1 \leq \cdots \leq b_k$

- $X \equiv \text{feature vector} \in \mathbb{R}^n$
- $Y \equiv \text{closing price} \text{current price} \in \mathbb{R}$
- Break Y into $k \approx 50$ cut points $b_1 \leq \cdots \leq b_k$
- For each b_i , estimate probability $Y \geq b_i$, given X

- $X \equiv \text{feature vector} \in \mathbb{R}^n$
- $Y \equiv \text{closing price} \text{current price} \in \mathbb{R}$
- Break Y into $k \approx 50$ cut points $b_1 \leq \cdots \leq b_k$
- For each b_i , estimate probability $Y \geq b_i$, given X
 - Say X belongs to class C_i if $Y \geq b_i$

- $X \equiv \text{feature vector} \in \mathbb{R}^n$
- $Y \equiv \text{closing price} \text{current price} \in \mathbb{R}$
- Break Y into $k \approx 50$ cut points $b_1 \leq \cdots \leq b_k$
- For each b_i , estimate probability $Y \geq b_i$, given X
 - Say X belongs to class C_i if $Y \geq b_i$
 - k-class problem: each example in many classes

- $X \equiv \text{feature vector} \in \mathbb{R}^n$
- $Y \equiv \text{closing price} \text{current price} \in \mathbb{R}$
- Break Y into $k \approx 50$ cut points $b_1 \leq \cdots \leq b_k$
- For each b_i , estimate probability $Y \geq b_i$, given X
 - Say X belongs to class C_i if $Y \geq b_i$
 - k-class problem: each example in many classes
 - Use BoosTexter (boosting (Schapire, 1990))

- $X \equiv \text{feature vector} \in \mathbb{R}^n$
- $Y \equiv \text{closing price} \text{current price} \in \mathbb{R}$
- Break Y into $k \approx 50$ cut points $b_1 \leq \cdots \leq b_k$
- For each b_i , estimate probability $Y \geq b_i$, given X
 - Say X belongs to class C_i if $Y \geq b_i$
 - k-class problem: each example in many classes
 - Use BoosTexter (boosting (Schapire, 1990))
- ullet Can convert to estimated distribution of Y|X

- $X \equiv \text{feature vector} \in \mathbb{R}^n$
- $Y \equiv \text{closing price} \text{current price} \in \mathbb{R}$
- Break Y into $k \approx 50$ cut points $b_1 \leq \cdots \leq b_k$
- For each b_i , estimate probability $Y \geq b_i$, given X
 - Say X belongs to class C_i if $Y \geq b_i$
 - k-class problem: each example in many classes
 - Use BoosTexter (boosting (Schapire, 1990))
- ullet Can convert to estimated distribution of Y|X

New algorithm for conditional density estimation

- Repeat until time bound, for each hotel:
 - 1. Assume this hotel closes next

- Repeat until time bound, for each hotel:
 - 1. Assume this hotel closes next
 - 2. Sample prices from predicted price distributions

- Repeat until time bound, for each hotel:
 - 1. Assume this hotel closes next
 - 2. Sample prices from predicted price distributions
 - 3. Given these prices compute $V_0, V_1, \dots V_8$
 - $V_i = v(G^*)$ if own **exactly** i of the hotel
 - $-V_0 \leq V_1 \leq \ldots \leq V_8$

- Repeat until time bound, for each hotel:
 - 1. Assume this hotel closes next
 - 2. Sample prices from predicted price distributions
 - 3. Given these prices compute $V_0, V_1, \dots V_8$
 - $V_i = v(G^*)$ if own **exactly** i of the hotel
 - $V_0 \le V_1 \le \ldots \le V_8$
- Value of *i*th copy is avg($V_i V_{i-1}$)

Other Uses of Sampling

Flights: Cost/benefit analysis for postponing commitment

Other Uses of Sampling

Flights: Cost/benefit analysis for postponing commitment

Cost: Price expected to rise over next n minutes

Benefit: More price info becomes known

 Compute expected marginal value of buying some different flight

Other Uses of Sampling

Flights: Cost/benefit analysis for postponing commitment

Cost: Price expected to rise over next n minutes

Benefit: More price info becomes known

 Compute expected marginal value of buying some different flight

Entertainment: Bid more (ask less) than expected value of having one more (fewer) ticket

Finals

Team	Avg.	Adj.	Institution
ATTac	3622	4154	AT&T
livingagents	3670	4094	Living Systems (Germ.)
whitebear	3513	3931	Cornell
Urlaub01	3421	3909	Penn State
Retsina	3352	3812	CMU
CaiserSose	3074	3766	Essex (UK)
Southampton	3253*	3679	Southampton (UK)
TacsMan	2859	3338	Stanford

- ATTac improves over time
- livingagents is an open-loop strategy

• ATTacs: "'full-strength" agent based on boosting

- ATTac_s: "'full-strength" agent based on boosting
- SimpleMean_s: sample from empirical distribution (previously played games)

- ATTacs: "'full-strength" agent based on boosting
- SimpleMean_s: sample from empirical distribution (previously played games)
- ConditionalMeans: condition on closing time

- ATTacs: "'full-strength" agent based on boosting
- SimpleMean_s: sample from empirical distribution (previously played games)
- ConditionalMean_s: condition on closing time
- $ATTac_{ns}$, $ConditionalMean_{ns}$, $SimpleMean_{ns}$: predict expected value of the distribution

- ATTac_s: "'full-strength" agent based on boosting
- SimpleMean_s: sample from empirical distribution (previously played games)
- ConditionalMean_s: condition on closing time
- $ATTac_{ns}$, $ConditionalMean_{ns}$, $SimpleMean_{ns}$: predict expected value of the distribution
- CurrentPrice: predict no change

- ATTac_s: "'full-strength" agent based on boosting
- SimpleMean_s: sample from empirical distribution (previously played games)
- ConditionalMean_s: condition on closing time
- $ATTac_{ns}$, $ConditionalMean_{ns}$, $SimpleMean_{ns}$: predict expected value of the distribution
- CurrentPrice: predict no change
- EarlyBidder: motivated by TAC-01 entry livingagents

- ATTacs: "'full-strength" agent based on boosting
- SimpleMean_s: sample from empirical distribution (previously played games)
- ConditionalMean_s: condition on closing time
- $ATTac_{ns}$, $ConditionalMean_{ns}$, $SimpleMean_{ns}$: predict expected value of the distribution
- CurrentPrice: predict no change
- EarlyBidder: motivated by TAC-01 entry livingagents
 - Immediately bids high for G^* (with $SimpleMean_{ns}$)
 - Goes to sleep

Stability

• 7 EarlyBidder's with 1 ATTac

Agent	Score	Utility
ATTac	2431 ± 464	8909 ± 264
EarlyBidder	-4880 ± 337	9870 \pm 34

Stability

• 7 EarlyBidder's with 1 ATTac

Agent	Score	Utility
ATTac	2431 ± 464	8909 ± 264
<i>EarlyBidder</i>	-4880 ± 337	9870 ± 34

• 7 ATTac's with 1 EarlyBidder

Agent	Score	Utility
ATTac	2578 ± 25	9650 ± 21
EarlyBidder	2869 ± 69	10079 ± 55

Stability

• 7 EarlyBidder's with 1 ATTac

Agent	Score	Utility
ATTac	2431 ± 464	8909 ± 264
EarlyBidder	-4880 ± 337	9870 ± 34

• 7 ATTac's with 1 EarlyBidder

Agent	Score	Utility
ATTac	2578 ± 25	9650 ± 21
EarlyBidder	2869 ± 69	10079 ± 55

EarlyBidder gets more utility; ATTac pays less

• *Phase I*: Training from TAC-01 (seeding round, finals)

- Phase I: Training from TAC-01 (seeding round, finals)
- Phase II: Training from TAC-01, phases I, II

- Phase I: Training from TAC-01 (seeding round, finals)
- Phase II: Training from TAC-01, phases I, II
- Phase III: Training from phases I III

- Phase I: Training from TAC-01 (seeding round, finals)
- Phase II: Training from TAC-01, phases I, II
- Phase III: Training from phases I III

Agent	Relative Score		
	Phase I	Phase III	
$ATTac_{ns}$	$105.2 \pm 49.5 \ (2)$	$166.2 \pm 20.8 \ (1)$	
ATTac _s	$27.8 \pm 42.1 (3)$	$122.3 \pm 19.4 \ (2)$	
EarlyBidder	$140.3 \pm 38.6 \ (1)$	$117.0 \pm 18.0 \ (3)$	
$SimpleMean_{ns}$	$-28.8 \pm 45.1 \ (5)$	$-11.5 \pm 21.7 \ \ (4)$	
SimpleMean _s	$-72.0 \pm 47.5 (7)$	$-44.1 \pm 18.2 (5)$	
$Conditional Mean_{ns}$	$8.6 \pm 41.2 \ (4)$	$-60.1 \pm 19.7 (6)$	
Conditional Mean _s	$-147.5 \pm 35.6 \ (8)$	$-91.1 \pm 17.6 \ (7)$	
CurrentPrice	$-33.7 \pm 52.4 \ (6)$	$-198.8 \pm 26.0 \ (8)$	

Last-minute bidding (R,O, 2001)

- eBay: first-price, ascending auction
- Amazon: auction extended if bid in last 10 minutes
- eBay: bots exist to incrementally raise your bid to a maximum
- Still people snipe. Why?
 - There's a risk that the bid might not make it
 - However, common-value ⇒ bid conveys info
 - Late-bidding can be seen as implicit collusion
 - Or ..., lazy, unaware, etc. (Amazon and eBay)
- Finding: more late-bidding on eBay,
 - even more on antiques rather than computers

Small design-difference matters

Late Bidding as Best Response

- Good vs. incremental bidders
 - They start bidding low, plan to respond
 - Doesn't give them time to respond
- Good vs. other snipers
 - Implicit collusion
 - Both bid low, chance that one bid doesn't get in
- Good in common-value case
 - protects information

Overall, the analysis of multiple bids supports the hypothesis that last-minute bidding arises at least in part as a response by sophisticated bidders to unsophisticated incremental bidding.