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Good Afternoon, Colleagues

Are there any questions?

• FCC: did they acheive “bundles”?

• FCC: what was the “optimal” strategy?

• What’s new in TAC?

• Do algorithms scale with more clients?

• Was TAC SCM more successful?

Peter Stone
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Logistics

• FAI talk on Friday

− Jeopardy agent (Fri., 11am 2.302)

• Final tournament: Monday 12/13, 9-noon

• Peer review process — thoughts?

Peter Stone



FCC Spectrum Auction #35

• 422 licences in 195 markets (cities)

− 80 bidders spent $8 billion
− ran Dec 12 - Jan 26 2001
− licence is a 10 or 15 mhz spectrum chunk

• Run in rounds
− bid on each licence you want each round
− simultaneous; break ties by arrival time
− current winner and all bids are known

• Allowable bids: 1 to 9 bid increments
− 1 bid incr is 10% – 20% of current price

• Other complex rules
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Model
• Agent goals

− desire 0, 1, or 2 licences per market
− desired markets have unique values
− subject to budget constraint

Assumption: no inter-market value dependencies

• Utility is profit: Σl(value− cost)

• modeled 5 most important bidders

− others served mainly to raise prices
− modeled as several small bidders
− lower valuations (75%→ pessimistic)
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Bidding Strategies
• Considering self only

− Knapsack
− best self-only approach

• Strategic bidding (consider others)

− threats
− budget stretching
− Strategic Demand Reduction (SDR)

Explicit communication not allowed
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Randomized SDR
• Figure out allocations dynamically

− round 1: bid for everything you want
− first big bidder winning bid owns licence
− satisfaction = owned value / desired value

• Random⇒ uneven allocation

− get small share⇒ incentive to cheat
− fair: own satisfaction close to average
− if unlucky, take licences until fair

• Small bidders take licences from owners

− remember licence’s owner
− allocate while small bidders active

Peter Stone



RSDR vs. Knapsack
Method Agent Profit ($M) Ratio Cost

0 980 (±170) 1.00 .82
1 650 (±85) 1.00 .82

Knapsack 2 830 (±91) 1.00 .84
3 170 (±20) 1.00 .84
4 550 (±96) 1.00 .86
0 1240 (±210) 1.26 .76
1 820 (±83) 1.25 .77

RSDR 2 1300 (±290) 1.58 .74
3 300 (±44) 1.78 .79
4 930 (±240) 1.68 .76

44% more profit; avg. ratio 1.51
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Robustness
• What if someone cheats?

− cheat: defect back to knapsack
− others stay out of its way⇒ big win

• Solution: Punishing RSDR (PRSDR)

− cheater takes your licence⇒ take it back
− take it back first while still have money
− aggressively punitive: skips optimizers

Simplification: pointing out cheaters by hand
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Robustness
Method Ratio Cost

Knapsack 1.00 .84
RSDR 1.51 .76

RSDR Cheater 1.63 .76
RSDR Victim 1.22 .79

PRSDR Cheater 1.02 .83
PRSDR Enforcer 1.17 .81
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Extensions

• Change small bidder valuations

− test robustness
− RSDR is optimal for preserving profit

• Multiple cheaters

− current punishment too aggressive
− collapse back to knapsack instead
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Extentions
Method Ratio Local Ratio Cost

Multiple Cheater 1.03 1.03 .84
Multiple Enforcer 1.01 1.01 .83

50% Knapsack 1.70 1.00 .74
50% RSDR 3.42 2.02 .51

75% Knapsack 1.00 1.00 .84
75% RSDR 1.51 1.51 .76

85% Knapsack 0.68 1.00 .89
85% RSDR 0.81 1.25 .87
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Future Work
• Robustness enhancements

− better punishment method

• More complex value functions

− inter-market dependencies

• Automatic cheater detection

− partial cheating vs. detection arms race
− smack back into compliance

• Generalization to other auctions

− more robust to tie-breaking procedure variations
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• Works even uncertain knowledge
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Summary
• Communication-free coordination

• Enables much higher profits

• Works even uncertain knowledge

• Real-world functionality relies on simple assumptions:

− bidders want more profit
− bidders familiar with PRSDR and its benefits
− bidders willing to try it risk-free

Peter Stone
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[Wellman, Wurman, et al., 2000]
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Trading Agent Competition
• Put forth as a benchmark problem for e-marketplaces

[Wellman, Wurman, et al., 2000]

• Autonomous agents act as travel agents

− Game: 8 agents, 12 min.
− Agent: simulated travel agent with 8 clients
− Client: TACtown↔ Tampa within 5-day period

• Auctions for flights, hotels, entertainment tickets

− Server maintains markets, sends prices to agents
− Agent sends bids to server over network

Peter Stone



28 Simultaneous Auctions
Flights: Inflight days 1-4, Outflight days 2-5 (8)

• Unlimited supply; prices tend to increase; immediate
clear; no resale
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28 Simultaneous Auctions
Flights: Inflight days 1-4, Outflight days 2-5 (8)

• Unlimited supply; prices tend to increase; immediate
clear; no resale

Hotels: Tampa Towers/Shoreline Shanties days 1-4 (8)

• 16 rooms per auction; 16th-price ascending auction;
quote is ask price; no resale
• Random auction closes minutes 4 – 11

Entertainment: Wrestling/Museum/Park days 1-4 (12)

• Continuous double auction; initial endowments; quote
is bid-ask spread; resale allowed

Peter Stone



Client Preferences and Utility

Preferences: randomly generated per client

− Ideal arrival, departure days
− Good Hotel Value
− Entertainment Values
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Client Preferences and Utility

Preferences: randomly generated per client

− Ideal arrival, departure days
− Good Hotel Value
− Entertainment Values

Utility: 1000 (if valid) − travel penalty + hotel bonus
+ entertainment bonus

Score: Sum of client utilities − expenditures

Peter Stone
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Allocation

G ≡ complete allocation of goods to clients

v(G) ≡ utility of G − cost of needed goods

G∗ ≡ argmax v(G)

Given holdings and prices, find G∗

• General allocation NP-complete

– Tractable in TAC: mixed-integer LP [ATTac-2000]

– Estimate v(G∗) quickly with LP relaxation

Prices known⇒ G∗ known⇒ optimal bids known

Peter Stone
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High-Level Strategy
• Learn model of expected hotel price distributions

• For each auction:

– Repeatedly sample price vector from distributions
– Bid avg marginal expected utility: v(G∗

w)− v(G∗
l )

• Bid for all goods — not just those in G∗

Goal: analytically calculate optimal bids

Peter Stone
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• Features:

− Current hotel and flight prices
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Hotel Price Prediction
• Features:

− Current hotel and flight prices
− Current time in game
− Hotel closing times
− Agents in the game (when known)
− Variations of the above

• Data:

− Hundreds of seeding round games
− Assumption: similar economy
− Features 7→ actual prices

Peter Stone



The Learning Algorithm

• X ≡ feature vector ∈ IRn

• Y ≡ closing price − current price ∈ IR

Peter Stone



The Learning Algorithm

• X ≡ feature vector ∈ IRn

• Y ≡ closing price − current price ∈ IR

• Break Y into k ≈ 50 cut points b1 ≤ · · · ≤ bk

Peter Stone



The Learning Algorithm

• X ≡ feature vector ∈ IRn

• Y ≡ closing price − current price ∈ IR

• Break Y into k ≈ 50 cut points b1 ≤ · · · ≤ bk

• For each bi, estimate probability Y ≥ bi, given X

Peter Stone



The Learning Algorithm

• X ≡ feature vector ∈ IRn

• Y ≡ closing price − current price ∈ IR

• Break Y into k ≈ 50 cut points b1 ≤ · · · ≤ bk

• For each bi, estimate probability Y ≥ bi, given X

− Say X belongs to class Ci if Y ≥ bi

Peter Stone



The Learning Algorithm

• X ≡ feature vector ∈ IRn

• Y ≡ closing price − current price ∈ IR

• Break Y into k ≈ 50 cut points b1 ≤ · · · ≤ bk

• For each bi, estimate probability Y ≥ bi, given X

− Say X belongs to class Ci if Y ≥ bi

− k-class problem: each example in many classes

Peter Stone



The Learning Algorithm

• X ≡ feature vector ∈ IRn

• Y ≡ closing price − current price ∈ IR

• Break Y into k ≈ 50 cut points b1 ≤ · · · ≤ bk

• For each bi, estimate probability Y ≥ bi, given X

− Say X belongs to class Ci if Y ≥ bi

− k-class problem: each example in many classes
− Use BoosTexter (boosting [Schapire, 1990])

Peter Stone



The Learning Algorithm

• X ≡ feature vector ∈ IRn

• Y ≡ closing price − current price ∈ IR

• Break Y into k ≈ 50 cut points b1 ≤ · · · ≤ bk

• For each bi, estimate probability Y ≥ bi, given X

− Say X belongs to class Ci if Y ≥ bi

− k-class problem: each example in many classes
− Use BoosTexter (boosting [Schapire, 1990])

• Can convert to estimated distribution of Y |X

Peter Stone



The Learning Algorithm

• X ≡ feature vector ∈ IRn

• Y ≡ closing price − current price ∈ IR

• Break Y into k ≈ 50 cut points b1 ≤ · · · ≤ bk

• For each bi, estimate probability Y ≥ bi, given X

− Say X belongs to class Ci if Y ≥ bi

− k-class problem: each example in many classes
− Use BoosTexter (boosting [Schapire, 1990])

• Can convert to estimated distribution of Y |X

New algorithm for conditional density estimation

Peter Stone
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Hotel Expected Values
• Repeat until time bound, for each hotel:

1. Assume this hotel closes next
2. Sample prices from predicted price distributions
3. Given these prices compute V0, V1, . . . V8

− Vi = v(G∗)if own exactly i of the hotel
− V0 ≤ V1 ≤ . . . ≤ V8

• Value of ith copy is avg( Vi − Vi−1 )

Peter Stone



Other Uses of Sampling
Flights: Cost/benefit analysis for postponing commitment
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Other Uses of Sampling
Flights: Cost/benefit analysis for postponing commitment

Cost: Price expected to rise over next n minutes
Benefit: More price info becomes known
• Compute expected marginal value of buying some

different flight

Entertainment: Bid more (ask less) than expected value of
having one more (fewer) ticket

Peter Stone



Finals
Team Avg. Adj. Institution
ATTac 3622 4154 AT&T
livingagents 3670 4094 Living Systems (Germ.)
whitebear 3513 3931 Cornell
Urlaub01 3421 3909 Penn State
Retsina 3352 3812 CMU
CaiserSose 3074 3766 Essex (UK)
Southampton 3253∗ 3679 Southampton (UK)
TacsMan 2859 3338 Stanford

• ATTac improves over time
• livingagents is an open-loop strategy
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• ATTacs: “‘full-strength” agent based on boosting
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Controlled Experiments
• ATTacs: “‘full-strength” agent based on boosting

• SimpleMeans: sample from empirical distribution
(previously played games)

• ConditionalMeans: condition on closing time

• ATTacns, ConditionalMeanns, SimpleMeanns:
predict expected value of the distribution

• CurrentPrice: predict no change

• EarlyBidder: motivated by TAC-01 entry livingagents
− Immediately bids high for G∗ (with SimpleMeanns)
− Goes to sleep

Peter Stone



Stability
• 7 EarlyBidder’s with 1 ATTac

Agent Score Utility
ATTac 2431 ± 464 8909 ± 264
EarlyBidder −4880 ± 337 9870 ± 34
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Stability
• 7 EarlyBidder’s with 1 ATTac

Agent Score Utility
ATTac 2431 ± 464 8909 ± 264
EarlyBidder −4880 ± 337 9870 ± 34

• 7 ATTac’s with 1 EarlyBidder
Agent Score Utility
ATTac 2578 ± 25 9650 ± 21
EarlyBidder 2869 ± 69 10079 ± 55

EarlyBidder gets more utility; ATTac pays less

Peter Stone
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Results
• Phase I : Training from TAC-01 (seeding round, finals)
• Phase II : Training from TAC-01, phases I, II
• Phase III : Training from phases I – III

Agent Relative Score
Phase I Phase III

ATTacns 105.2± 49.5 (2) 166.2± 20.8 (1)
ATTacs 27.8± 42.1 (3) 122.3± 19.4 (2)
EarlyBidder 140.3± 38.6 (1) 117.0± 18.0 (3)
SimpleMeanns −28.8± 45.1 (5) −11.5± 21.7 (4)
SimpleMeans −72.0± 47.5 (7) −44.1± 18.2 (5)
ConditionalMeanns 8.6± 41.2 (4) −60.1± 19.7 (6)
ConditionalMeans −147.5± 35.6 (8) −91.1± 17.6 (7)
CurrentPrice −33.7± 52.4 (6) −198.8± 26.0 (8)

Peter Stone



Last-minute bidding [R,O, 2001]
− eBay: first-price, ascending auction
− Amazon: auction extended if bid in last 10 minutes
− eBay: bots exist to incrementally raise your bid to a

maximum

• Still people snipe. Why?
− There’s a risk that the bid might not make it
− However, common-value =⇒ bid conveys info
− Late-bidding can be seen as implicit collusion
− Or . . . , lazy, unaware, etc. (Amazon and eBay)
• Finding: more late-bidding on eBay,
− even more on antiques rather than computers

Small design-difference matters
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Late Bidding as Best Response
• Good vs. incremental bidders
− They start bidding low, plan to respond
− Doesn’t give them time to respond

• Good vs. other snipers
− Implicit collusion
− Both bid low, chance that one bid doesn’t get in

• Good in common-value case
− protects information

Overall, the analysis of multiple bids supports the
hypothesis that last-minute bidding arises at least
in part as a response by sophisticated bidders to
unsophisticated incremental bidding.
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