Teaching Teammates in Ad Hoc Teams

Peter Stone

Director, Learning Agents Research Group
Department of Computer Sciences
The University of Texas at Austin

Joint work with

Gal A. Kaminka, Sarit Kraus, Bar Ilan University Jeffrey S. Rosenschein, Hebrew University

- Autonomous agents
- Robotics
- Machine learning (RL)
- Multiagent systems

- Autonomous agents
- Robotics
- Machine learning (RL)
- Multiagent systems
 - e-commerce
 - mechanism design

- Autonomous agents
- Robotics
- Machine learning (RL)
- Multiagent systems
 - e-commerce
 - mechanism design

Teamwork

Teamwork

Teamwork

- Typical scenario: pre-coordination
 - People practice together
 - Robots given coordination languages, protocols
 - "Locker room agreement" (Stone & Veloso, '99)

- Ad hoc team player is an individual
 - Unknown teammates (programmed by others)

- Ad hoc team player is an individual
 - Unknown teammates (programmed by others)
- May or may not be able to communicate

- Ad hoc team player is an individual
 - Unknown teammates (programmed by others)
- May or may not be able to communicate
- Teammates likely sub-optimal: no control

- Ad hoc team player is an individual
 - Unknown teammates (programmed by others)
- May or may not be able to communicate
- Teammates likely sub-optimal: no control

- Ad hoc team player is an individual
 - Unknown teammates (programmed by others)
- May or may not be able to communicate
- Teammates likely sub-optimal: no control

Goal: Create a good team player

- Ad hoc team player is an individual
 - Unknown teammates (programmed by others)
- May or may not be able to communicate
- Teammates likely sub-optimal: no control

Goal: Create a good team player

- Minimal representative scenarios
 - One teammate, no communication
 - Fixed and known behavior

Scenarios

• Cooperative normal form game (w/ Kaminka & Rosenschein)

M1	b_0	b_1	b_2
a_0	25	1	0
a_1	10	30	10
a_2	0	33	40

Cooperative k-armed bandit

Scenarios

• Cooperative normal form game (w/ Kaminka & Rosenschein)

M1	b_0	b_1	b_2
a_0	25	1	0
a_1	10	30	10
a_2	0	33	40

Cooperative k-armed bandit

Formalism

- Agent A in our control: actions $a_0, a_1, \dots a_{x-1}$
- Agent B reacts in a fixed way: $b_0, b_1, \ldots, b_{y-1}$

Formalism

- Agent A in our control: actions $a_0, a_1, \dots a_{x-1}$
- Agent B reacts in a fixed way: $b_0, b_1, \ldots, b_{y-1}$
- Game theory: normal form, fully cooperative

M1	b_0	b_1	b_2
a_0	25	1	0
a_1	10	30	10
a_2	0	33	40

• Payoff from joint action (a_i, b_j) : $m_{i,j}$

Formalism

- Agent A in our control: actions $a_0, a_1, \dots a_{x-1}$
- Agent B reacts in a fixed way: $b_0, b_1, \ldots, b_{y-1}$
- Game theory: normal form, fully cooperative

M1	b_0	b_1	b_2
a_0	25	1	0
a_1	10	30	10
a_2	0	33	40

- Payoff from joint action (a_i, b_j) : $m_{i,j}$
- ullet Highest payoff m^* always at (a_{x-1},b_{y-1})
- Agent B's default action: b_0

- Agent A's goal: action sequence with highest reward
 - Undiscounted, medium-term (finite)
 - Depends on Agent B's strategy

- Agent A's goal: action sequence with highest reward
 - Undiscounted, medium-term (finite)
 - Depends on Agent B's strategy

Agent B not adaptive $\implies a_0$ always

M1	b_0	b_1	b_2
a_0	25	1	0
a_1	10	30	10
a_2	0	33	40

- Agent A's goal: action sequence with highest reward
 - Undiscounted, medium-term (finite)
 - Depends on Agent B's strategy

Agent B not adaptive $\implies a_0$ always

M1	b_0	b_1	b_2
a_0	25	1	0
a_1	10	30	10
a_2	0	33	40

• Reward sequence: 25, 25, 25, ...

- Agent A's goal: action sequence with highest reward
 - Undiscounted, medium-term (finite)
 - Depends on Agent B's strategy

Agent B best response \Longrightarrow can do better

M1	b_0	b_1	b_2
a_0	25	1	0
a_1	10	30	10
a_2	0	33	40

• Reward sequence: 25, 25, 25, ...

• Reward sequence: 25

- Agent A's goal: action sequence with highest reward
 - Undiscounted, medium-term (finite)
 - Depends on Agent B's strategy

Agent B best response \Longrightarrow can do better

M1	b_0	b_1	b_2
a_0	25	1	0
a_1	10	30	10
a_2	0	33	40

- Reward sequence: 25, 25, 25, ...
- Reward sequence: 25, 0

- Agent A's goal: action sequence with highest reward
 - Undiscounted, medium-term (finite)
 - Depends on Agent B's strategy

Agent B best response \Longrightarrow can do better

M1	b_0	b_1	b_2
a_0	25	1	0
a_1	10	30	10
a_2	0	33	40

- Reward sequence: 25, 25, 25, ...
- Reward sequence: 25, 0, 40

- Agent A's goal: action sequence with highest reward
 - Undiscounted, medium-term (finite)
 - Depends on Agent B's strategy

Agent B best response \Longrightarrow can do better

M1	b_0	b_1	b_2
a_0	25	1	0
a_1	10	30	10
a_2	0	33	40

- Reward sequence: 25, 25, 25, ...
- Reward sequence: 25, 0, 40, 40, 40, ...

- Agent A's goal: action sequence with highest reward
 - Undiscounted, medium-term (finite)
 - Depends on Agent B's strategy

M1	b_0	b_1	b_2
a_0	25	1	0
a_1	10	30	10
a_2	0	33	40

- Reward sequence: 25, 25, 25, ...
- Reward sequence: 25, 0, 40, 40, 40, ...
- How?

- Agent A's goal: action sequence with highest reward
 - Undiscounted, medium-term (finite)
 - Depends on Agent B's strategy

M1	b_0	b_1	b_2
a_0	25	1	0
a_1	10	30	10
a_2	0	33	40

- Reward sequence: 25, 25, 25, ...
- Reward sequence: 25, 0, 40, 40, 40, ...
- Reward sequence: 25, 10

- Agent A's goal: action sequence with highest reward
 - Undiscounted, medium-term (finite)
 - Depends on Agent B's strategy

M1	b_0	b_1	b_2
a_0	25	1	0
a_1	10	30	10
a_2	0	33	40

- Reward sequence: 25, 25, 25, ...
- Reward sequence: 25, 0, 40, 40, 40, ...
- Reward sequence: 25, 10, 33

- Agent A's goal: action sequence with highest reward
 - Undiscounted, medium-term (finite)
 - Depends on Agent B's strategy

M1	b_0	b_1	b_2
a_0	25	1	0
a_1	10	30	10
a_2	0	33	40

- Reward sequence: 25, 25, 25, ...
- Reward sequence: 25, 0, 40, 40, 40, ...
- Reward sequence: 25, 10, 33, 40

- Agent A's goal: action sequence with highest reward
 - Undiscounted, medium-term (finite)
 - Depends on Agent B's strategy

M1	b_0	b_1	b_2
a_0	25	1	0
a_1	10	30	10
a_2	0	33	40

- Reward sequence: 25, 25, 25, ...
- Reward sequence: 25, 0, 40, 40, 40, ...
- Reward sequence: 25, 10, 33, 40, 40, 40, ...

- Agent A's goal: action sequence with highest reward
 - Undiscounted, medium-term (finite)
 - Depends on Agent B's strategy

M1	b_0	b_1	b_2
a_0	25	1	0
a_1	10	30	10
a_2	0	33	40

- Reward sequence: 25, 25, 25, ...
- Reward sequence: 25, 0, 40, 40,... (65 from 1st 3)
- Reward sequence: 25, 10, 33, 40, ... (68 from 1st 3)

- Agent A's goal: action sequence with highest reward
 - Undiscounted, medium-term (finite)
 - Depends on Agent B's strategy

Agent B best response \Longrightarrow or even better

M1	b_0	b_1	b_2
a_0	25	1	0
a_1	10	30	10
a_2	0	33	40

- Reward sequence: 25, 25, 25, ...
- Reward sequence: 25, 0, 40, 40,...
- Reward sequence: 25, 10, 33, 40, ...

Cost: 15+40=**55**

Cost: 15+30+7=**52**

- Agent A's goal: action sequence with highest reward
 - Undiscounted, medium-term (finite)
 - Depends on Agent B's strategy

M1	b_0	b_1	b_2
a_0	25	1	0
a_1	10	30	10
a_2	0	33	40

- Reward sequence: 25, 25, 25, ...
- Reward sequence: 25, 0, 40, 40,... Cost: 55, **Length: 2**
- Reward sequence: 25, 10, 33, 40, ... Cost: 52, Length: 3

Assumptions

1. Agent B: bounded-memory BR, ϵ -greedy action strategy

Assumptions

- 1. Agent B: bounded-memory BR, ϵ -greedy action strategy
 - mem: memory size
 - $-\epsilon$: degree of randomness

- 1. Agent B: bounded-memory BR, ϵ -greedy action strategy
 - mem: memory size
 - $-\epsilon$: degree of randomness
- 2. Agent A knows Agent B's type

- 1. Agent B: bounded-memory BR, ϵ -greedy action strategy
 - mem: memory size
 - $-\epsilon$: degree of randomness
- 2. Agent A knows Agent B's type

M1	b_0	b_1	b_2
a_0	25	1	0
a_1	10	30	10
a_2	0	33	40

- Example: mem = 4, $\epsilon = 0.1$
 - Agent A previous actions: a_1, a_0, a_1, a_1

- 1. Agent B: bounded-memory BR, ϵ -greedy action strategy.
 - mem: memory size
 - $-\epsilon$: degree of randomness
- 2. Agent A knows Agent B's type

M1	b_0	b_1	b_2
a_0	25	1	0
\mathbf{a}_1	10	30	10
a_2	0	33	40

- Example: mem = 4, $\epsilon = 0.1$
 - Agent A previous actions: a_1, a_0, a_1, a_1
 - Agent B: A will select a_0 (prob. 0.25) or a_1 (0.75)

- 1. Agent B: bounded-memory BR, ϵ -greedy action strategy.
 - mem: memory size
 - $-\epsilon$: degree of randomness
- 2. Agent A knows Agent B's type

M1	b_0	b_1	b_2
a_0	25	1	0
\mathbf{a}_1	10	30	10
a_2	0	33	40

- Example: mem = 4, $\epsilon = 0.1$
 - Agent A previous actions: a_1, a_0, a_1, a_1
 - Agent B: A will select a_0 (prob. 0.25) or a_1 (0.75)
 - $-BR(a_1, a_0, a_1, a_1) = b_1$

- 1. Agent B: bounded-memory BR, ϵ -greedy action strategy.
 - mem: memory size
 - $-\epsilon$: degree of randomness
- 2. Agent A knows Agent B's type

M1	b_0	b_1	b_2
a_0	25	1	0
\mathbf{a}_1	10	30	10
a_2	0	33	40

- Example: mem = 4, $\epsilon = 0.1$
 - Agent A previous actions: a_1, a_0, a_1, a_1
 - Agent B: A will select a_0 (prob. 0.25) or a_1 (0.75)
 - $-BR(a_1, a_0, a_1, a_1) = b_1$
 - Agent B: selects b_1 (1- ϵ) or uniformly random (ϵ)

- 1. Agent B: bounded-memory BR, ϵ -greedy action strategy.
 - mem: memory size
 - $-\epsilon$: degree of randomness
- 2. Agent A knows Agent B's type

M1	b_0	b_1	b_2
a_0	25	1	0
\mathbf{a}_1	10	30	10
a_2	0	33	40

- Example: mem = 4, $\epsilon = 0.1$
 - Agent A previous actions: a_1, a_0, a_1, a_1
 - Agent B: A will select a_0 (prob. 0.25) or a_1 (0.75)
 - $-BR(a_1, a_0, a_1, a_1) = b_1$
 - Agent B: selects b_1 (1- ϵ) or uniformly random (ϵ)
 - Agent A: action determines payoff and next history

Extensive Form Version

Extensive Form Version

Stick with iterated normal form for presentation, algorithms

Questions

- Can we find the optimal action sequence efficiently?
- How long can the optimal action sequences be?

Cases

- Deterministic teammate, 1-step memory (mem= 1, $\epsilon = 0$)
- Longer teammate memory $(mem>1, \epsilon=0)$
- Teammate non-determinism (mem> 1, ϵ > 0)

- Define $S_n^*(a_i, b_j)$ = optimal sequence of length n
- ullet Define $S_0^*(a_i,b_j)$ to be cost 0 if $m_{i,j}=m_*$, else ∞

$$S_0^*(a_2,b_2)$$
 Cost 0

M1	b_0	b_1	b_2
a_0	25	1	0
a_1	10	30	10
a_2	0	33	40

- Define $S_n^*(a_i, b_j)$ = optimal sequence of length n
- ullet Define $S_0^*(a_i,b_j)$ to be cost 0 if $m_{i,j}=m_*$, else ∞

$S_0^*(a_2,b_2)$	Cost 0
$S_2^*(a_0, b_0)$	Cost 15+40
$S_2^*(a_1, b_0)$	Cost 30+7
$S_2^*(a_2, b_0)$	Cost 40

M1	b_0	b_1	b_2
a_0	25	1	0
a_1	10	30	10
a_2	0	33	40

- Define $S_n^*(a_i, b_j)$ = optimal sequence of length n
- Define $S_0^*(a_i,b_j)$ to be cost 0 if $m_{i,j}=m_*$, else ∞
- ullet Find $S_n^*(a_i,b_j)$ using S_{n-1}^* 's $(O(d),d=\dim(M))$
 - Either $S_{n-1}^*(a_i,b_j)$ or
 - Best sequence that prepends (a_i, b_j) to $S_{n-1}^*(a_{act}, b_{BR(a_i)})$

$$S_3^*(a_0,b_0)$$
 ? $S_2^*(a_0,b_0)$ Cost 55 $S_2^*(a_1,b_0)$ Cost 37 $S_2^*(a_2,b_0)$ Cost 40

M1	b_0	b_1	b_2
a_0	25	1	0
a_1	10	30	10
a_2	0	33	40

- Define $S_n^*(a_i, b_j)$ = optimal sequence of length n
- Define $S_0^*(a_i,b_j)$ to be cost 0 if $m_{i,j}=m_*$, else ∞
- ullet Find $S_n^*(a_i,b_j)$ using S_{n-1}^* 's $(O(d),d=\dim(M))$
 - Either $S_{n-1}^*(a_i,b_j)$ or
 - Best sequence that prepends (a_i, b_j) to $S_{n-1}^*(a_{act}, b_{BR(a_i)})$

$S_3^*(a_0,b_0)$	Cost 52
$S_2^*(a_0, b_0)$	Cost 55
$S_2^*(a_1, b_0)$	Cost 37+15
$S_2^*(a_2, b_0)$	Cost 40+15

M1	b_0	b_1	b_2
a_0	25	1	0
a_1	10	30	10
a_2	0	33	40

- Define $S_n^*(a_i, b_j)$ = optimal sequence of length n
- Define $S_0^*(a_i,b_j)$ to be cost 0 if $m_{i,j}=m_*$, else ∞
- Find $S_n^*(a_i,b_j)$ using S_{n-1}^* 's
 - Either $S_{n-1}^*(a_i,b_i)$ or
 - Best sequence that prepends (a_i, b_j) to $S_{n-1}^*(a_{act}, b_{BR(a_i)})$
- Sufficient to calculate $S_n^*(a_i, b_0), \forall i < x$

 $loop O(d^2)$

(O(d), d = dim(M))

- How high do we need to let n get?

$$S_3^*(a_0, b_0)$$
 Cost 52
 $S_2^*(a_0, b_0)$ Cost 55
 $S_2^*(a_1, b_0)$ Cost 37+15
 $S_2^*(a_2, b_0)$ Cost 40+15

M1	b_0	b_1	b_2
a_0	25	1	0
a_1	10	30	10
a_2	0	33	40

- Recall: Agent A has x actions, Agent B has y
- **Theorem:** No sequence is longer than min(x, y)

- Recall: Agent A has x actions, Agent B has y
- **Theorem:** No sequence is longer than min(x, y)
 - Neither agent takes the same action twice
 - Otherwise, part of the sequence could be excised

- Recall: Agent A has x actions, Agent B has y
- **Theorem:** No sequence is longer than min(x, y)
 - Neither agent takes the same action twice
 - Otherwise, part of the sequence could be excised
- Theorem: $\exists M$ with optimal sequence $\min(x,y)$

- Recall: Agent A has x actions, Agent B has y
- **Theorem:** No sequence is longer than min(x, y)
 - Neither agent takes the same action twice
 - Otherwise, part of the sequence could be excised
- **Theorem:** $\exists M$ with optimal sequence $\min(x,y)$

M2	b_0	b_1	b_2		b_{y-3}	b_{y-2}	b_{y-1}
a_0	$100 - \delta$	0	0	• • •	0	0	0
a_1	$100-2\delta$	$100 - \delta$	0		:	0	0
a_2	0	$100-2\delta$	$100 - \delta$			1	0
:	;		100	200			
a_{x-3}	0	:		200	$100 - \delta$	0	0
a_{x-2}	0	0	:		$100-2\delta$	$100 - \delta$	0
a_{x-1}	a	0	0		0	$100-2\delta$	100

- Recall: Agent A has x actions, Agent B has y
- **Theorem:** No sequence is longer than min(x, y)
 - Neither agent takes the same action twice
 - Otherwise, part of the sequence could be excised
- Theorem: $\exists M$ with optimal sequence $\min(x,y)$

M2	b_0	b_1	b_2		b_{y-3}	b_{y-2}	b_{y-1}
a_0	$100 - \delta$	0	0	• • •	0	0	0
a_1	$100-2\delta$	$100 - \delta$	0		:	0	0
a_2	0	$100-2\delta$	$100 - \delta$			1	0
:	:		200	200			:
a_{x-3}	0	1		$(\mathcal{O}_{\mathcal{A}}}}}}}}}}$	$100 - \delta$	0	0
a_{x-2}	0	0	:		$100-2\delta$	$100 - \delta$	0
a_{x-1}	a	0	0		0	$100-2\delta$	100

Questions

- ullet Find the optimal action sequence efficiently? $O(d^3)$
- Maximum length of optimal sequences? $\min(x, y)$

Cases

- Deterministic teammate, 1-step memory (mem= 1, $\epsilon = 0$)
- Longer teammate memory $(mem>1, \epsilon=0)$
- Teammate non-determinism (mem> 1, ϵ > 0)

Questions

- Find the optimal action sequence efficiently?
- Maximum length of optimal sequences?

Cases

- Deterministic teammate, 1-step memory (mem= 1, $\epsilon = 0$)
- Longer teammate memory $(mem>1, \epsilon=0)$
- Teammate non-determinism $(mem > 1, \epsilon > 0)$

- Algorithm extends naturally, but exponential in mem
 - Need S_{n-1}^* for every possible history of Agent A actions
 - Reaching m^* once not sufficient ("stability")

- Algorithm extends naturally, but exponential in mem
 - Need S_{n-1}^* for every possible history of Agent A actions
 - Reaching m^* once not sufficient ("stability")

History $[a_2; a_1; a_0]$ Response b_2

M3	b_0	b_1	b_2
a_0	0	30	50
a_1	41	20	0
a_2	99	20	100

- Algorithm extends naturally, but exponential in mem
 - Need S_{n-1}^* for every possible history of Agent A actions
 - Reaching m^* once not sufficient ("stability")

History $[a_2; a_2; a_1]$ Response b_0

M3	b_0	b_1	b_2
a_0	0	30	50
a_1	41	20	0
a_2	99	20	100

- Algorithm extends naturally, but exponential in mem
 - Need S_{n-1}^* for every possible history of Agent A actions
 - Reaching m^* once not sufficient ("stability")

History $[a_2; a_2; a_2]$ Response b_2

M3	b_0	b_1	b_2
a_0	0	30	50
a_1	41	20	0
a_2	99	20	100

- Algorithm extends naturally, but exponential in mem
 - Need S_{n-1}^* for every possible history of Agent A actions
 - Reaching m^* once not sufficient ("stability")

History $[a_2; a_2; a_2]$ Response b_2

M3	b_0	b_1	b_2
a_0	0	30	50
a_1	41	20	0
a_2	99	20	100

NP-hard: reduction from Hamiltonian Path (Littman)

- Theorem: $\exists M$ with optimal seq. $(\min(x,y)-1)*mem+1$
- Conjecture: No seq. longer than $(\min(x,y)-1)*mem+1$

- Theorem: $\exists M$ with optimal seq. $(\min(x,y)-1)*mem+1$
- Conjecture: No seq. longer than $(\min(x,y)-1)*mem+1$
 - Can only prove no seq. longer than $\min(x,y) * x^{mem-1}$

- Theorem: $\exists M$ with optimal seq. $(\min(x,y)-1)*mem+1$
- Conjecture: No seq. longer than $(\min(x,y)-1)*mem+1$
 - Can only prove no seq. longer than $\min(x,y) * x^{mem-1}$

M2	b_0	b_1	b_2		b_{y-3}	b_{y-2}	b_{y-1}
a_0	$100 - \delta$	0	0	• • •	0	0	0
a_1	$100-2\delta$	$100 - \delta$	0		:	0	0
a_2	0	$100-2\delta$	$100 - \delta$			1	0
:	:		200	100			
a_{x-3}	0	:		$(\mathcal{O}_{\mathcal{A}_{\mathcal{A}}})$	$100 - \delta$	0	0
a_{x-2}	0	0	:		$100-2\delta$	$100 - \delta$	0
a_{x-1}	Ø	0	0		0	$100-2\delta$	100

Questions

Find the optimal action sequence efficiently?

no

Maximum length of optimal sequences?

Cases

- Deterministic teammate, 1-step memory (mem= 1, $\epsilon = 0$)
- Longer teammate memory

(mem> 1, $\epsilon = 0$)

Teammate non-determinism

(mem> 1, $\epsilon > 0$)

Questions

- Find the optimal action sequence efficiently?
- Maximum length of optimal sequences?

Cases

- Deterministic teammate, 1-step memory (mem= 1, $\epsilon = 0$)
- Longer teammate memory $(mem>1, \epsilon=0)$
- Teammate non-determinism (mem> 1, $\epsilon > 0$)

- $EV(a_i, b_j) = (1 \epsilon)m_{i,j} + \frac{\epsilon}{y}(\sum_{k=0}^{y-1} m_{i,k})$
 - Cost now sum of $m^* EV(a_i, b_j)$ over sequence

- $EV(a_i, b_j) = (1 \epsilon) m_{i,j} + \frac{\epsilon}{y} (\sum_{k=0}^{y-1} m_{i,k})$
 - Cost now sum of $m^* EV(a_i, b_j)$ over sequence
 - $-m^*$ now maximum $EV(a_i,b_j)$ in M

- $EV(a_i, b_j) = (1 \epsilon)m_{i,j} + \frac{\epsilon}{y}(\sum_{k=0}^{y-1} m_{i,k})$
 - Cost now sum of $m^* EV(a_i, b_j)$ over sequence
 - $-m^*$ now maximum $\mathit{EV}(a_i,b_j)$ in M
- "Target" (m^*) can change:

- $EV(a_i, b_j) = (1 \epsilon)m_{i,j} + \frac{\epsilon}{y}(\sum_{k=0}^{y-1} m_{i,k})$
 - Cost now sum of $m^* EV(a_i, b_j)$ over sequence
 - $-m^*$ now maximum $\mathit{EV}(a_i,b_j)$ in M
- "Target" (m^*) can change: $S^*(a_0,b_0)$ with mem=3

- $EV(a_i, b_j) = (1 \epsilon)m_{i,j} + \frac{\epsilon}{y}(\sum_{k=0}^{y-1} m_{i,k})$
 - Cost now sum of $m^* EV(a_i, b_j)$ over sequence
 - $-m^*$ now maximum $\mathit{EV}(a_i,b_j)$ in M
- "Target" (m^*) can change: $S^*(a_0,b_0)$ with mem=3

$$\epsilon=0$$
: m_* at (a_3,b_3) L(S^*)=10 $\epsilon=0.1$: m_* at (a_3,b_3) L(S^*)=8 $\epsilon=0.3$: m_* at (a_3,b_3) L(S^*)=3 $\epsilon=0.4$: m_* at (a_2,b_2) L(S^*)=3

M4	b_0	b_1	b_2	b_3
a_0	25	0	0	0
a_1	88	90	99	80
a_2	70	98	99	80
a_3	70	70	98	100

Teammate Non-Determinism

- $EV(a_i, b_j) = (1 \epsilon)m_{i,j} + \frac{\epsilon}{y}(\sum_{k=0}^{y-1} m_{i,k})$
 - Cost now sum of $m^* EV(a_i, b_j)$ over sequence
 - $-m^*$ now maximum $\mathit{EV}(a_i,b_j)$ in M
- "Target" (m^*) can change: $S^*(a_0,b_0)$ with mem=3

$$\epsilon=0$$
: m_* at (a_3,b_3) L(S^*)=10
 $\epsilon=0.1$: m_* at (a_3,b_3) L(S^*)=8
 $\epsilon=0.3$: m_* at (a_3,b_3) L(S^*)=3
 $\epsilon=0.4$: m_* at (a_2,b_2) L(S^*)=3

M4	b_0	b_1	b_2	b_3
a_0	25	0	0	0
a_1	88	90	99	80
a_2	70	98	99	80
a_3	70	70	98	100

Algorithm and theorems hold unchanged

Teammate Non-Determinism

- $EV(a_i, b_j) = (1 \epsilon)m_{i,j} + \frac{\epsilon}{y}(\sum_{k=0}^{y-1} m_{i,k})$
 - Cost now sum of $m^* EV(a_i, b_j)$ over sequence
 - $-m^*$ now maximum $\mathit{EV}(a_i,b_j)$ in M
- "Target" (m^*) can change: $S^*(a_0,b_0)$ with mem=3

$$\epsilon=0$$
: m_* at (a_3,b_3) L(S^*)=10
 $\epsilon=0.1$: m_* at (a_3,b_3) L(S^*)=8
 $\epsilon=0.3$: m_* at (a_3,b_3) L(S^*)=3
 $\epsilon=0.4$: m_* at (a_2,b_2) L(S^*)=3

M4	b_0	b_1	b_2	b_3
a_0	25	0	0	0
$\mid a_1 \mid$	88	90	99	80
a_2	70	98	99	80
a_3	70	70	98	100

- Algorithm and theorems hold unchanged
 - Except when $\epsilon = 1$

Questions

Find the optimal action sequence efficiently?

no

Maximum length of optimal sequences?

Cases

- Deterministic teammate, 1-step memory (mem= 1, $\epsilon = 0$)
- Longer teammate memory $(mem>1, \epsilon=0)$
- Teammate non-determinism (mem> 1, ϵ > 0)

All variations of the algorithm fully implemented

- All variations of the algorithm fully implemented
- ullet Test frequency of longest S^* of varying lengths
 - 3x3 matrix: how often $L(S^*(a_i,b_j)) = 3$?

- All variations of the algorithm fully implemented
- ullet Test frequency of longest S^* of varying lengths
 - 3x3 matrix: how often $L(S^*(a_i,b_j))=3$?
- $m_{i,j}$ uniformly random in [0,100]; $m_{x-1,y-1}=100$

- All variations of the algorithm fully implemented
- ullet Test frequency of longest S^* of varying lengths
 - 3x3 matrix: how often $L(S^*(a_i,b_j))=3$?
- $m_{i,j}$ uniformly random in [0, 100]; $m_{x-1,y-1} = 100$

mem=1	1	2	3	4	5	6	7	8	9	10
3×3	104	852	44							

- All variations of the algorithm fully implemented
- ullet Test frequency of longest S^* of varying lengths
 - 3x3 matrix: how often $L(S^*(a_i,b_j))=3$?
- $m_{i,j}$ uniformly random in [0, 100]; $m_{x-1,y-1} = 100$

mem=1]	2	3	4	5	6	7	8	9	10
3×3	104	852	44							
4×4	12	825	158	5						
5×5	3	662	316	19	0					
6×6	0	465	489	45	1	0				
7×7	0	349	565	81	5	0	0			
8×8	0	236	596	159	8	1	0	0		
9×9	0	145	640	193	20	2	0	0	0	
10×10	0	72	636	263	29	0	0	0	0	0

mem=1	1	2	3	4	5	6	7	8	9	10
3×3	104	852	44							
4×4	12	825	158	5						
5×5	3	662	316	19	0					
6×6	0	465	489	45	1	0				
7×7	0	349	565	81	5	0	0			
8 × 8	0	236	596	159	8	1	0	0		
9×9	0	145	640	193	20	2	0	0	0	
10 × 10	0	72	636	263	29	0	0	0	0	0

mem=3	1	2	3	4	5	6	7	8	9	10	11
3×3	98	178	344	340	28	8	4	0	0	0	0
4×4	15	76	266	428	134	60	21	0	0	0	0
5×5	1	19	115	408	234	145	71	7	0	0	0
6×6	0	0	22	282	272	222	164	27	11	0	0
7×7	0	0	5	116	293	282	220	55	17	10	1

Robot Experiments

• In progress...

Related Work

Game Theory

Multiagent learning (Claus & Boutilier, '98), (Littman, '01),

(Conitzer & Sandholm, '03), (Powers & Shoham, '05), (Chakraborty & Stone, '08)

- Economic repeated games (Hart & Mas-Colell, '00), (Neyman & Okada, '00)
- Fictitious play (Brown, '51)
- Adaptive play (Young, '93)

Opponent Modeling

- Intended plan recognition (Sidner, '85), (Lochbaum, '91), (Carberry, '01)
- SharedPlans (Grosz & Kraus, '96)
- Recursive Modeling (Vidal & Durfee, '95)

Ad Hoc Teams

- Ad hoc team player is an individual
 - Unknown teammates (programmed by others)
- May or may not be able to communicate
- Teammates likely sub-optimal: no control

Goal: Create a good team player

- Minimal representative scenarios
 - One teammate, no communication
 - Fixed and known behavior: best response

Scenarios

• Cooperative normal form game (w/ Kaminka & Rosenschein)

M1	b_0	b_1	b_2
a_0	25	1	0
a_1	10	30	10
a_2	0	33	40

• Cooperative *k*-armed bandit

- Random value from a distribution
- ullet Expected value μ

 Arm_*

 Arm_1

 Arm_2

- Agent A: teacher
 - Knows payoff distributions
 - Objective: maximize expected sum of payoffs

- Agent A: teacher
 - Knows payoff distributions
 - Objective: maximize expected sum of payoffs
 - If alone, always Arm_{*}

- Agent A: teacher
 - Knows payoff distributions
 - Objective: maximize expected sum of payoffs
 - If alone, always Arm_{*}
- Agent B: learner
 - Can only pull Arm₁ or Arm₂

- Agent A: teacher
 - Knows payoff distributions
 - Objective: maximize expected sum of payoffs
 - If alone, always Arm_{*}
- Agent B: learner
 - Can only pull Arm₁ or Arm₂
 - Selects arm with highest observed sample average

 Arm_*

 Arm_1

 Arm_2

- Alternate actions (teacher first)
- Results of all actions fully observable (to both)

- Alternate actions (teacher first)
- Results of all actions fully observable (to both)
- Number of rounds remaining finite, known to teacher

- Alternate actions (teacher first)
- Results of all actions fully observable (to both)
- Number of rounds remaining finite, known to teacher

Objective: maximize expected sum of payoffs

- μ_i : expected payoff of Arm_i ($i \in \{1, 2, *\}$)
 - Assume $\mu_* > \mu_1 > \mu_2$: only interesting case

- μ_i : expected payoff of Arm_i ($i \in \{1, 2, *\}$)
 - Assume $\mu_* > \mu_1 > \mu_2$: only interesting case
- n_i : number of times Arm_i has been pulled
- m_i : cumulative payoff from past pulls of Arm_i

- μ_i : expected payoff of Arm_i ($i \in \{1, 2, *\}$)
 - Assume $\mu_* > \mu_1 > \mu_2$: only interesting case
- n_i : number of times Arm_i has been pulled
- m_i : cumulative payoff from past pulls of Arm_i
- $\bar{x_i} = \frac{m_i}{n_i}$: observed sample average so far

- μ_i : expected payoff of Arm_i ($i \in \{1, 2, *\}$)
 - Assume $\mu_* > \mu_1 > \mu_2$: only interesting case
- n_i : number of times Arm_i has been pulled
- m_i : cumulative payoff from past pulls of Arm_i
- $\bar{x_i} = \frac{m_i}{n_i}$: observed sample average so far
- r: number of rounds left

- μ_i : expected payoff of Arm_i ($i \in \{1, 2, *\}$)
 - Assume $\mu_* > \mu_1 > \mu_2$: only interesting case
- n_i : number of times Arm_i has been pulled
- m_i : cumulative payoff from past pulls of Arm_i
- $\bar{x_i} = \frac{m_i}{n_i}$: observed sample average so far
- r: number of rounds left

Which arm should the teacher pull, as a function of r and all the μ_i , n_i , and \bar{x}_i ?

$$\mu_* = 10.0$$

$$\mu_1 = 9.0$$

$$\mu_2 = 5.0$$

$$r = 3$$

 $\mu_* = 10.0$

 $\mu_1 = 9.0$

 $\mu_2 = 5.0$

r = 3

i	m_i	n_i	$\bar{x_i}$
1	0.0	0	
2	0.0	0	

9.8

 $\mu_* = 10.0$

 $\mu_1 = 9.0$

 $\mu_2 = 5.0$

r = 3

i	m_i	n_i	$\bar{x_i}$
1	0.0	0	
2	0.0	0	

9.8 7.0

$$\mu_* = 10.0$$

$$\mu_1 = 9.0$$

$$\mu_2 = 5.0$$

$$r = 2$$

i	m_i	n_i	$\bar{x_i}$
1	0.0	0	
2	7.0	1	7.0

 $\mu_* = 10.0$

 $\mu_1 = 9.0$

 $\mu_2 = 5.0$

r = 2

i	m_i	n_i	$\bar{x_i}$
1	0.0	0	
2	7.0	1	7.0

10.3

 $\mu_* = 10.0$

 $\mu_1 = 9.0$

 $\mu_2 = 5.0$

r = 2

i	m_i	n_i	$\bar{x_i}$
1	0.0	0	
2	7.0	1	7.0

10.3

6.0

$$\mu_* = 10.0$$

$$\mu_1 = 9.0$$

$$\mu_2 = 5.0$$

$$r = 1$$

i	m_i	n_i	$\bar{x_i}$
1	6.0	1	6.0
2	7.0	1	7.0

 $\mu_* = 10.0$

$$\mu_1 = 9.0$$

$$\mu_2 = 5.0$$

$$r = 1$$

i	m_i	n_i	$\bar{x_i}$
1	6.0	1	6.0
2	7.0	1	7.0

• Teacher Arm₁ expected value:

$$\mu_* = 10.0$$

$$\mu_1 = 9.0$$

$$\mu_2 = 5.0$$

$$r = 1$$

i	m_i	n_i	$\bar{x_i}$
1	6.0	1	6.0
2	7.0	1	7.0

- Teacher Arm₁ expected value:
 - Define η : probability Arm₁ returns > 8
 - Assume: $\eta > \frac{1}{2}$

$$\mu_* = 10.0$$

$$\mu_1 = 9.0$$

$$\mu_2 = 5.0$$

$$r = 1$$

i	m_i	n_i	$\bar{x_i}$
1	6.0	1	6.0
2	7.0	1	7.0

- Teacher Arm₁ expected value:
 - Define η : probability Arm₁ returns > 8
 - Assume: $\eta > \frac{1}{2}$
 - EV: $\mu_1 + \eta \mu_1 + (1 \eta)\mu_2$

$$\mu_* = 10.0$$

$$\mu_1 = 9.0$$

$$\mu_2 = 5.0$$

$$r = 1$$

i	m_i	n_i	$\bar{x_i}$
1	6.0	1	6.0
2	7.0	1	7.0

- Teacher Arm₁ expected value:
 - Define η : probability Arm₁ returns > 8
 - Assume: $\eta > \frac{1}{2}$
 - EV: $\mu_1 + \eta \mu_1 + (1 \eta)\mu_2 > 9 + \frac{9}{2} + \frac{5}{2} = 16$

$$\mu_* = 10.0$$

$$\mu_1 = 9.0$$

$$\mu_2 = 5.0$$

$$r = 1$$

i	m_i	n_i	$\bar{x_i}$
1	6.0	1	6.0
2	7.0	1	7.0

- Teacher Arm₁ expected value:
 - Define η : probability Arm₁ returns > 8
 - Assume: $\eta > \frac{1}{2}$
 - EV: $\mu_1 + \eta \mu_1 + (1 \eta)\mu_2 > 9 + \frac{9}{2} + \frac{5}{2} = 16$
- Teacher Arm_{*} expected value:
 - EV: $\mu_* + \mu_2$

$$\mu_* = 10.0$$

$$\mu_1 = 9.0$$

$$\mu_2 = 5.0$$

$$r = 1$$

i	m_i	n_i	$\bar{x_i}$
1	6.0	1	6.0
2	7.0	1	7.0

- Teacher Arm₁ expected value:
 - Define η : probability Arm₁ returns > 8
 - Assume: $\eta > \frac{1}{2}$
 - EV: $\mu_1 + \eta \mu_1 + (1 \eta)\mu_2 > 9 + \frac{9}{2} + \frac{5}{2} = 16$
- Teacher Arm_{*} expected value:
 - EV: $\mu_* + \mu_2 = 15$

• $\bar{x_1} < \bar{x_2} \Longrightarrow \mathbf{no}$

- $\bar{x_1} < \bar{x_2} \Longrightarrow \mathbf{no}$
 - Sequence of values from Arm₂: u_0, u_1, u_2, \dots

- $\bar{x_1} < \bar{x_2} \Longrightarrow \mathbf{no}$
 - Sequence of values from Arm₂: u_0, u_1, u_2, \dots
 - Optimal from Arm₂: u_0

- $\bar{x_1} < \bar{x_2} \Longrightarrow \mathbf{no}$
 - Sequence of values from Arm₂: u_0, u_1, u_2, \dots
 - Optimal from Arm₂: u_0, a

- $\bar{x_1} < \bar{x_2} \Longrightarrow \mathbf{no}$
 - Sequence of values from Arm₂: u_0, u_1, u_2, \dots
 - Optimal from Arm₂: $u_0, a, b, c, d, e, \dots w, x, y, z$

- $\bar{x_1} < \bar{x_2} \Longrightarrow \mathbf{no}$
 - Sequence of values from Arm₂: u_0, u_1, u_2, \dots
 - Optimal from Arm₂: $u_0, a, b, c, d, e, \dots w, x, y, z$
 - Also possible: μ_*

- $\bar{x_1} < \bar{x_2} \Longrightarrow \mathbf{no}$
 - Sequence of values from Arm₂: u_0, u_1, u_2, \dots
 - Optimal from Arm₂: $u_0, a, b, c, d, e, \dots w, x, y, z$
 - Also possible: μ_*, u_0, μ_*

- $\bar{x_1} < \bar{x_2} \Longrightarrow \mathbf{no}$
 - Sequence of values from Arm₂: u_0, u_1, u_2, \dots
 - Optimal from Arm₂: $u_0, a, b, c, d, e, \dots w, x, y, z$
 - Also possible: μ_*, u_0, μ_*, a

- $\bar{x_1} < \bar{x_2} \Longrightarrow \mathbf{no}$
 - Sequence of values from Arm₂: u_0, u_1, u_2, \dots
 - Optimal from Arm₂: $u_0, a, b, c, d, e, \dots w, x, y, z$
 - Also possible: $\mu_*, u_0, \mu_*, a, b, c, d, e, \dots, w, x$

- ullet $ar{x_1} < ar{x_2} \Longrightarrow \mathbf{no}$
 - Sequence of values from Arm₂: u_0, u_1, u_2, \dots
 - Optimal from Arm₂: $u_0, a, b, c, d, e, \dots w, x, y, z$
 - Also possible: $\mu_*, u_0, \mu_*, a, b, c, d, e, \dots, w, x$
- $\bar{x_1} > \bar{x_2} \Longrightarrow$?

- ullet $ar{x_1} < ar{x_2} \Longrightarrow \mathbf{no}$
 - Sequence of values from Arm₂: u_0, u_1, u_2, \dots
 - Optimal from Arm₂: $u_0, a, b, c, d, e, \dots w, x, y, z$
 - Also possible: $\mu_*, u_0, \mu_*, a, b, c, d, e, \dots, w, x$
- $\bar{x_1} > \bar{x_2} \Longrightarrow$?
 - Subtle, but still no

- ullet $ar{x_1} < ar{x_2} \Longrightarrow \mathbf{no}$
 - Sequence of values from Arm₂: u_0, u_1, u_2, \dots
 - Optimal from Arm₂: $u_0, a, b, c, d, e, \dots w, x, y, z$
 - Also possible: $\mu_*, u_0, \mu_*, a, b, c, d, e, \dots, w, x$
- $\bar{x_1} > \bar{x_2} \Longrightarrow$?
 - Subtle, but still **no**
 - Challenge: prove it!

• Same proof

- Same proof
 - Sequence of values from Arm₁: v_0, v_1, v_2, \dots
 - Optimal from Arm₁: $v_0, a, b, c, d, e, \dots w, x, y, z$
 - Also possible: $\mu_*, v_0, \mu_*, a, b, c, d, e, \dots, w, x$

- Same proof
 - Sequence of values from Arm₁: v_0, v_1, v_2, \dots
 - Optimal from Arm₁: $v_0, a, b, c, d, e, \dots w, x, y, z$
 - Also possible: $\mu_*, v_0, \mu_*, a, b, c, d, e, \dots, w, x$
- ullet Only need to consider Arm $_1$ when $ar{x_1} < ar{x_2}$
 - Depends on distributions

- Same proof
 - Sequence of values from Arm₁: v_0, v_1, v_2, \dots
 - Optimal from Arm₁: $v_0, a, b, c, d, e, \dots w, x, y, z$
 - Also possible: $\mu_*, v_0, \mu_*, a, b, c, d, e, \dots, w, x$
- ullet Only need to consider Arm $_1$ when $ar{x_1} < ar{x_2}$
 - Depends on distributions
 - Consider binary and normal

 $\longrightarrow \begin{cases} 1 & \text{with probability } p \\ 0 & \text{with probability } 1-p \end{cases}$


```
 \longrightarrow \begin{cases} 1 & \text{with probability } p \\ 0 & \text{with probability } 1-p \\ \mu_i = p_i & m_i = \text{number of 1's so far} \end{cases}
```


 p_1

 p_2

 p_*

>

 p_1

>

 p_2

- Consider teaching if
 - 1. $\bar{x_1} < \bar{x_2}$

 p_*

 p_1

 p_2

1.
$$\bar{x_1} < \bar{x_2} \equiv \frac{m_1}{n_1} < \frac{m_2}{n_2}$$

$$\frac{m_1}{n_1} < \frac{m_2}{n_2}$$

$$p_*$$

>

$$p_1$$

>

 p_2

1.
$$\bar{x_1} < \bar{x_2}$$
 $\equiv \frac{m_1}{n_1} < \frac{m_2}{n_2}$

2. It could help:
$$\frac{m_1+1}{n_1+1} > \frac{m_2}{n_2}$$

 p_*

>

 p_1

>

92

1.
$$\bar{x_1} < \bar{x_2}$$
 $\equiv \frac{m_1}{n_1} < \frac{m_2}{n_2}$

- 2. It could help: $\frac{m_1+1}{n_1+1} > \frac{\bar{m_2}}{n_2}$
- Teacher Arm $_*$ expected value: $p_* + p_2$

 p_*

>

 p_1

>

92

1.
$$\bar{x_1} < \bar{x_2}$$
 $\equiv \frac{m_1}{n_1} < \frac{m_2}{n_2}$

- 2. It could help: $\frac{m_1+1}{n_1+1} > \frac{m_2}{n_2}$
- Teacher Arm $_*$ expected value: $p_* + p_2$
- ullet Teacher Arm₁ expected value: p_1

 p_*

>

 p_1

>

92

1.
$$\bar{x_1} < \bar{x_2}$$
 $\equiv \frac{m_1}{n_1} < \frac{m_2}{n_2}$

- 2. It could help: $\frac{m_1+1}{n_1+1} > \frac{\bar{m_2}}{n_2}$
- Teacher Arm $_*$ expected value: $p_* + p_2$
- Teacher Arm₁ expected value: $p_1 + p_1 * p_1$

 p_*

>

 p_1

 p_2

1.
$$\bar{x_1} < \bar{x_2} \equiv \frac{m_1}{n_1} < \frac{m_2}{n_2}$$

- 2. It could help: $\frac{m_1+1}{n_1+1} > \frac{m_2}{n_2}$
- Teacher Arm $_*$ expected value: $p_* + p_2$
- Teacher Arm₁ expected value: $p_1 + p_1 * p_1 + (1 p_1)p_2$

 p_*

>

 p_1

>

 p_2

Consider teaching if

1.
$$\bar{x_1} < \bar{x_2} \equiv \frac{m_1}{n_1} < \frac{m_2}{n_2}$$

2. It could help:
$$\frac{m_1+1}{n_1+1} > \frac{\tilde{m_2}}{n_2}$$

- Teacher Arm $_*$ expected value: $p_* + p_2$
- Teacher Arm₁ expected value: $p_1 + p_1 * p_1 + (1 p_1)p_2$

Teach iff conditions 1, 2, and $p_* - p_1 < p_1(p_1 - p_2)$

Algorithm for Optimal Teacher Action

- Polynomial algorithm finds optimal teacher action
 - Takes starting values M_1, N_1, M_2, N_2 and R

Algorithm for Optimal Teacher Action

- Polynomial algorithm finds optimal teacher action
 - Takes starting values M_1, N_1, M_2, N_2 and R
- Dynamic programming
 - Works backwards from r=1
 - Considers all reachable values of m_1, n_1, m_2, n_2

Algorithm for Optimal Teacher Action

- Polynomial algorithm finds optimal teacher action
 - Takes starting values M_1, N_1, M_2, N_2 and R
- Dynamic programming
 - Works backwards from r=1
 - Considers all reachable values of m_1, n_1, m_2, n_2
- ullet $O(r^5)$ in both memory and runtime

Arms with Normal Distributions

$$\longrightarrow$$
 $N(\mu, \sigma)$

 (μ_2,σ_2)

 (μ_*, σ_*) (μ_1, σ_1)

 (μ_2,σ_2)

• Cost of teaching: $\mu_* - \mu_1$

$$(\mu_*, \sigma_*)$$

 (μ_*, σ_*) (μ_1, σ_1)

 (μ_2,σ_2)

- Cost of teaching: $\mu_* \mu_1$
- Benefit of teaching if successful: $\mu_1 \mu_2$

 (μ_*, σ_*) (μ_1, σ_1)

 (μ_2,σ_2)

- Cost of teaching: $\mu_* \mu_1$
- Benefit of teaching if successful: $\mu_1 \mu_2$ $(\bar{x_1} < \bar{x_2})$

$$(\mu_1,\sigma_1)$$

 (μ_2,σ_2)

- Cost of teaching: $\mu_* \mu_1$
- Benefit of teaching if successful: $\mu_1 \mu_2$ $(\bar{x_1} < \bar{x_2})$
- Probability it's successful: $1 \Phi_{\mu_1,\sigma_1}(\bar{x_2}(n_1+1) \bar{x_1}n_1)$
 - Cumulative probability that pulling Arm₁ causes $\bar{x_1} > \bar{x_2}$

$$(\mu_*,\sigma_*)$$

$$(\mu_*, \sigma_*) \qquad (\mu_1, \sigma_1)$$

 (μ_2,σ_2)

- Cost of teaching: $\mu_* \mu_1$
- Benefit of teaching if successful: $\mu_1 \mu_2$ $(\bar{x_1} < \bar{x_2})$
- Probability it's successful: $1 \Phi_{\mu_1,\sigma_1}(\bar{x_2}(n_1+1) \bar{x_1}n_1)$
 - Cumulative probability that pulling Arm₁ causes $\bar{x_1} > \bar{x_2}$

Teach iff
$$1 - \Phi_{\mu_1,\sigma_1}(\bar{x_2}(n_1+1) - \bar{x_1}n_1) > \frac{\mu_* - \mu_1}{\mu_1 - \mu_2}$$

 (μ_2,σ_2)

- Can solve computationally nested integral
- Not exactly, nor efficiently

 (μ_1,σ_1)

 (μ_2,σ_2)

- Can solve computationally nested integral
- Not exactly, nor efficiently
- Can you find an efficient algorithm?

Evaluating teacher heuristics

- Evaluating teacher heuristics
 - 1. Never teach
 - 2. Teach iff $\bar{x_1} < \bar{x_2}$
 - 3. Teach iff it would be optimal to teach if r=1

- Evaluating teacher heuristics
 - 1. Never teach
 - 2. Teach iff $\bar{x_1} < \bar{x_2}$
 - 3. Teach iff it would be optimal to teach if r=1
 - None dominates

- Evaluating teacher heuristics
 - 1. Never teach
 - 2. Teach iff $\bar{x_1} < \bar{x_2}$
 - 3. Teach iff it would be optimal to teach if r=1
 - None dominates
- ullet Looking for patterns in optimal action as a function of r

- Evaluating teacher heuristics
 - 1. Never teach
 - 2. Teach iff $\bar{x_1} < \bar{x_2}$
 - 3. Teach iff it would be optimal to teach if r=1
 - None dominates
- ullet Looking for patterns in optimal action as a function of r
 - Conjecture: teach when $r=1\Longrightarrow$ teach when r=2

- Evaluating teacher heuristics
 - 1. Never teach
 - 2. Teach iff $\bar{x_1} < \bar{x_2}$
 - 3. Teach iff it would be optimal to teach if r=1
 - None dominates
- ullet Looking for patterns in optimal action as a function of r
 - Conjecture: teach when $r=1\Longrightarrow$ teach when r=2
 - False!

- Evaluating teacher heuristics
 - 1. Never teach
 - 2. Teach iff $\bar{x_1} < \bar{x_2}$
 - 3. Teach iff it would be optimal to teach if r=1
 - None dominates
- ullet Looking for patterns in optimal action as a function of r
 - Conjecture: teach when $r=1\Longrightarrow$ teach when r=2
 - False! (binary and normal)

 Arm_2

 $Arm_3 \cdots Arm_z$

Additional arms for teacher make no difference

- Additional arms for teacher make no difference
 - Ignore all but the best

- Additional arms for teacher make no difference
 - Ignore all but the best
- Additional learner arms: most results generalize naturally

- Additional arms for teacher make no difference
 - Ignore all but the best
- Additional learner arms: most results generalize naturally
 - Never teach with Arm_z

Arm_{*}

 Arm_1

 Arm_2

 Arm_3

 \cdots Arm_z

- Additional arms for teacher make no difference
 - Ignore all but the best
- Additional learner arms: most results generalize naturally
 - Never teach with Arm_z (Arm_1 - Arm_{z-1} possible)

Arm_{*}

 Arm_1

 Arm_2

 Arm_3

 \cdots Arm_z

- Additional arms for teacher make no difference
 - Ignore all but the best
- Additional learner arms: most results generalize naturally
 - Never teach with Arm_z (Arm_1 - Arm_{z-1} possible)
 - Never teach with Arm_i when $\bar{x}_i > \bar{x}_j, \forall j \neq i$

Arm_{*}

 Arm_1

 Arm_2

 Arm_3

 Arm_z

- Additional arms for teacher make no difference
 - Ignore all but the best
- Additional learner arms: most results generalize naturally
 - Never teach with Arm_z (Arm_1 - Arm_{z-1} possible)
 - Never teach with Arm_i when $\bar{x}_i > \bar{x}_j, \forall j \neq i$
 - **Surprising**: May be best to teach with Arm_j for j > i

Arm_{*}

 Arm_1

 Arm_2

 Arm_3

 Arm_z

- Additional arms for teacher make no difference
 - Ignore all but the best
- Additional learner arms: most results generalize naturally
 - Never teach with Arm_z (Arm_1 - Arm_{z-1} possible)
 - Never teach with Arm_i when $\bar{x}_i > \bar{x}_j, \forall j \neq i$
 - **Surprising:** May be best to teach with ${\sf Arm}_j$ for j>i (teach with ${\sf Arm}_2$, even though $\bar{x}_1>\bar{x}_2>\bar{x}_3$)

What if the teacher doesn't know the distributions?

- What if the teacher doesn't know the distributions?
 - Exploration vs. exploitation

- What if the teacher doesn't know the distributions?
 - Exploration vs. exploitation vs. teaching

- What if the teacher doesn't know the distributions?
 - Exploration vs. exploitation vs. teaching
- What if the learner isn't greedy: explores on its own?

- What if the teacher doesn't know the distributions?
 - Exploration vs. exploitation vs. teaching
- What if the learner isn't greedy: explores on its own?
- How does this extend to the infinite (discounted) case?

- What if the teacher doesn't know the distributions?
 - Exploration vs. exploitation vs. teaching
- What if the learner isn't greedy: explores on its own?
- How does this extend to the infinite (discounted) case?
- What if there are multiple learners?

- Ad hoc team player is an individual
 - Unknown teammates (programmed by others)
- May or may not be able to communicate
- Teammates likely sub-optimal: no control

Goal: Create a good team player

- Ad hoc team player is an individual
 - Unknown teammates (programmed by others)
- May or may not be able to communicate
- Teammates likely sub-optimal: no control

Goal: Create a good team player

So far: Minimal representative scenarios

- Ad hoc team player is an individual
 - Unknown teammates (programmed by others)
- May or may not be able to communicate
- Teammates likely sub-optimal: no control

Goal: Create a good team player

- So far: Minimal representative scenarios
- Future: Unknown teammate behavior, communication, incomplete teacher knowledge,...

- Ad hoc team player is an individual
 - Unknown teammates (programmed by others)
- May or may not be able to communicate
- Teammates likely sub-optimal: no control

Goal: Create a good team player

- So far: Minimal representative scenarios
- Future: Unknown teammate behavior, communication, incomplete teacher knowledge,... much more!

Acknowledgements

- Yonatan Aumann, Michael Littman, Reshef Meir, Jeremy Stober, Daniel Stronger
- Fulbright and Guggenheim Foundations
- Israel Science Foundation