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Research Question

To what degree can autonomous

intelligent agents learn in the presence of

teammates and/or adversaries in
real-tfime, dynamic domains?
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Research Question

To what degree can autonomous
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e Autfonomous agents
e Robotics
e Machine learning (RL)
e Multiagent systems
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— mechanism design
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Teamwork
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Teamwork

Smali—sized League
—— ]

ik

Simulation League :
Legged Robot League Humanoid League
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Teamwork

e Typical scenario: pre-coordination

— People practice together
— Robots given coordination languages, protocols
— "Locker room agreement” (Stone & Veloso, '99)
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Ad Hoc Teams

e Ad hoc feam player is an individudl
— Unknown teammates (programmed by others)
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e Ad hoc feam player is an individudl
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" Departiment of Computer Sciences
Um The University of Texas at Austin © 2009 Pe.l.er S'I'Oﬂe



Ad Hoc Teams

e Ad hoc feam player is an individudl
— Unknown teammates (programmed by others)

e May or may not be able to communicate
e feammartes likely sub-optimal: no control
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Ur‘[ﬁ Department of Computer Sciences
e The University of Texas at Austin © 2009 Pe.l.er S.I.Ohe



Ad Hoc Teams

e Ad hoc team player is an individuadl
— Unknown teammates (programmed by others)

e May or may not be able fo communicate

e feammates likely sub-optimal: no confrol
| : 5 Dt B

Goal: Create a good team player
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Ad Hoc Teams

e Ad hoc team player is an individuadl
— Unknown teammates (programmed by others)

e May or may not be able fo communicate
o Teommq"res kely su\bpp’rimol: gle c_:Qn’rroI_

Bt T e

Goal: Create a good team player

e Minimal representative scenarios
— One teammate, no communication
— Fixed and known behavior
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Scenarios

e Cooperative normal form game

(w/ Kaminka & Rosenschein)

M1 | by b1 b2
a |25 1 0
a; | 10 30 10
az | 0 33 40

e Cooperative k-armed bandit

(w/ Kraus)
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Scenarios

e Cooperative normal form game

(w/ Kaminka & Rosenschein)

M1 | by b1 b2
a |25 1 0
a; | 10 30 10
az | 0 33 40
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Formalism

e Agent A in our control: actions ag, a1, ...a._1
o Agent Breacts in a fixed way: by, by, ...,b,_1
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Formalism

e Agent A in our control: actions ag, a1, ...a._1
o Agent Breacts in a fixed way: by, by, ...,b,_1
e Game theory: normal form, fully cooperative

M1| by by b
ap |20 1 O
a; |10 30 10
az | 0 33 40

e Payoff from joint action (a;, b;): m;
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Formalism

e Agent A in our control: actions ag, a1, ...a._1
o Agent Breacts in a fixed way: by, by, ...,b,_1
e Game theory: normal form, fully cooperative

M1| by by b
ap |20 1 O
a; |10 30 10
az | 0 33 40

e Payoff from joint action (a;, b;): m; ;
e Highest payoff m* always at (a,_1,b,-1)
e Agent B’s default action: by

Um Department of Compiuter Sciences
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Objective

e Agent A’s goal: action seguence with highest reward

— Undiscounted, medium-term (finite)
— Depends on Agent B's strategy
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Objective

e Agent A’s goal: action seguence with highest reward

— Undiscounted, medium-term (finite)

— Depends on Agent B's strategy

Agent B not adaptive — a( adlways

M1 |by b7 bo
ap | 25 1 0
a; | 10 30 10
aa | 0 33 40
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Objective

e Agent A’s goal: action seguence with highest reward

— Undiscounted, medium-term (finite)
— Depends on Agent B's strategy

Agent B not adaptive — a( adlways

M1 |by b7 bo
ap | 25 1 0
a; | 10 30 10
aa | 0 33 40

e Reward sequence: 25, 25, 25, ...
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Objective

e Agent A’s goal: action seguence with highest reward

— Undiscounted, medium-term (finite)
— Depends on Agent B's strategy

Agent B best response —- can do better

M1 |by b7 bo
ap | 25 1 0
a; | 10 30 10
aa | 0 33 40

[
e Reward seguence: 25
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Objective

e Agent A’s goal: action seguence with highest reward

— Undiscounted, medium-term (finite)
— Depends on Agent B's strategy

Agent B best response —- can do better

M1|1by b1 Do
ap | 20 1 0
a; | 10 30 10
az | 0 33 40

[
e Reward sequence: 25,0
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Objective

e Agent A’s goal: action seguence with highest reward

— Undiscounted, medium-term (finite)
— Depends on Agent B's strategy

Agent B best response —- can do better

M1|1by b1 Do
ap | 20 1 0
a; | 10 30 10
az | 0 33 40

[
e Reward sequence: 25, 0, 40
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Objective

e Agent A’s goal: action seguence with highest reward

— Undiscounted, medium-term (finite)
— Depends on Agent B's strategy

Agent B best response —- can do better

M1|1by b1 Do
ap | 20 1 0
a; | 10 30 10
az | 0 33 40

e Reward sequence: 25, 0, 40, 40, 40, ...
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Objective

e Agent A’s goal: action seguence with highest reward

— Undiscounted, medium-term (finite)

— Depends on Agenft B’s strategy

Agent B best response —> or even better

M1 |by b7 Do
ap | 25 1 0
a; | 10 30 10
aa | 0 33 40
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Objective

e Agent A’s goal: action sequence with highest reward

— Undiscounted, medium-term (finite)
— Depends on Agenft B’s strategy

Agent B best response —- or even better

M1 bQ bl b2
ag | 20 1 0
ap | 10 30 10
az | 0 33 40

o
e Reward sequence: 25, 10
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Objective

e Agent A’s goal: action sequence with highest reward

— Undiscounted, medium-term (finite)
— Depends on Agenft B’s strategy

Agent B best response —- or even better

M1 b() b1 b2
ag | 20 1 0
a; | 10 30 10
as 0 33 40

o
e Reward sequence: 25, 10, 33
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Objective

e Agent A’s goal: action sequence with highest reward

— Undiscounted, medium-term (finite)
— Depends on Agenft B’s strategy

Agent B best response —- or even better

M1 b() bl bg
ag | 20 1 0
a; | 10 30 10
as 0 33 40

e Reward sequence: 25, 10, 33, 40
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Objective

e Agent A’s goal: action sequence with highest reward

— Undiscounted, medium-term (finite)

— Depends on Agenft B’s strategy

e Reward sequence: 25, 10, 33, 40, 40, 40, ...

Agent B best response —- or even better

M1 b() bl bg
ag | 20 1 0
a; | 10 30 10
as 0 33 40
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Objective

e Agent A’s goal: action seguence with highest reward

— Undiscounted, medium-term (finite)
— Depends on Agenft B’s strategy

Agent B best response —- or even better

M1|1by b1 Do
ap | 20 1 0
a; | 10 30 10
az | 0 33 40

e Reward sequence: 25, 0, 40, 40.,. .. (65 from 1st 3)
e Reward sequence: 25, 10, 33, 40, ... (68 from 1st 3)
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Objective

e Agent A’s goal: action sequence with highest reward

— Undiscounted, medium-term (finite)
— Depends on Agenft B’s strategy

Agent B best response —- or even better

M1 b() bl bg
ag | 20 1 0
a; | 10 30 10
as 0 33 40

e Reward segquence: 25, 0, 40, 40,. .. Cost: 15+40=55
e Reward sequence: 25, 10, 33, 40, ... Cost: 15+30+7=52
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Objective

e Agent A’s godal: action sequence with highest reward

— Undiscounted, medium-term (finite)
— Depends on Agent B’s strategy

Agent B best response —- or even better

M1 b() b1 bg
ag | 25 1 0
ap | 10 30 10
az | 0 33 40

e Reward sequence:; 25, 0, 40, 40,. .. Cost: 55, Length: 2
e Reward sequence: 25, 10, 33,40,... Cost: 52, Length: 3
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Assumptions

1. Agent B: bounded-memory BR, e-greedy action strategy
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Assumptions

1. Agent B: bounded-memory BR, e-greedy action strategy

— mem: memaory size
— . degree of randomness
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Assumptions

1. Agent B: bounded-memory BR, e-greedy action strategy

— mem: memaory size
— . degree of randomness

2. Agent A knows Agent B's type
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Assumptions

1. Agent B: bounded-memory BR, e-greedy action strategy
— mem: memaory size

— e degree of randomness M1 [bo b1 by

ap | 20 1 0

2. Agent A knows Agent B’s type a; | 10 30 10
as 0 33 40

e Example: mem=4,¢ = 0.1

— Agent A previous actions: aq, ag, a1, a;
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Assumptions

1. Agent B: bounded-memory BR, e-greedy action strategy.
— mem: memaory size

— e degree of randomness M1 [bo b1 by

ap | 20 1 0
2. Agent A knows Agent B’s type a; |10 30 10
as 0 33 40

e Example: mem=4,¢ = 0.1

— Agent A previous actions: aq, ag, a1, a;
— Agent B: A will select aq (prob. 0.25) or aq (0.75)
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Assumptions

1. Agent B: bounded-memory BR, e-greedy action strategy.

— mem: memaory size

— e degree of randomness M1 [bo b1 by

ap | 20 1 0
2. Agent A knows Agent B’s type a; |10 30 10
as 0 33 40

e Example: mem=4,¢ = 0.1

— Agent A previous actions: aq, ag, a1, a;
— Agent B: A will select aq (prob. 0.25) or aq (0.75)

— B/?(al,ag,al,al) — bl
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Assumptions

1. Agent B: bounded-memory BR, e-greedy action strategy.

— mem: memaory size

— e degree of randomness M1 [bo b1 by

ap | 20 1 0
2. Agent A knows Agent B’s type a; |10 30 10
as 0 33 40

e Example: mem=4,¢ = 0.1

— Agent A previous actions: aq, ag, a1, a;

— Agent B: A will select aq (prob. 0.25) or aq (0.75)
— BR(a1, ag,a1,a1) = by

— Agent B: selects by (1-¢) or uniformly random (e)
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Assumptions

1. Agent B: bounded-memory BR, e-greedy action strategy.

— mem: memaory size

— e degree of randomness M1 [bo b1 by

ap | 20 1 0
2. Agent A knows Agent B’s type a; |10 30 10
as 0 33 40

e Example: mem=4,¢ = 0.1

— Agent A previous actions: aq, ag, a1, a;

— Agent B: A will select aq (prob. 0.25) or aq (0.75)

— BR(a1, ag,a1,a1) = by

— Agent B: selects by (1-¢) or uniformly random (e)

— Agent A: action detemines payoff and next history
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Extensive Form Version

al;a0;al;al

a0;al;a0:al al;al;a0;al a2;al;a0;al
(a2,b2)

a0;a0;al;a0 al;a0;al;a0 a2:a0:al;a0 a0;a2;al;a0 al;a2;al;a0 a2:a2:al;a0
/N AN AN /N /N /N
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Extensive Form Version

al;a0;al;al

a0;al;a0:al al;al;a0;al a2;al;a0;al
(a2,b2)
a0;a0;al;a0 al;a0;al;a0 a2;a0;al;a0 a0;a2;al;a0 al;a2;al;a0 a2;a2;al;a0
24N 4N 4N 24N 24N 24N

Stick with iterated normal form for presentation, algorithms
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Questions

e Can we find the optimal action sequence efficiently?
e How long can the optimal action sequences be?

Cases

e Deferministic feammate, 1-step memory (mem=1, ¢ = 0)
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Dynamic Programming Algorithm

e Define S (a;,b;) = optimal sequence of length n

e Define S;(a;, b;) to be cost O if m; ; = m.,., else oo

SS(CLQ, b2) Cost 0 M1 | by b1 b
ag | 20 1 0
a;r | 10 30 10
as 0 33 40
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Dynamic Programming Algorithm

e Define S (a;,b;) = optimal sequence of length n

e Define S;(a;, b;) to be cost O if m; ; = m.,., else oo

M1 [ by b1 bo
SS (CLQ, b()) Cost 15+40 a 29 1 0
S;(al, b()) Cost 30+/ a1 10 30 10
S;(ag, b()) Cost 40 ao 0 33 40
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Dynamic Programming Algorithm

e Define S (a;,b;) = optimal sequence of length n
e Define S;(a;, b;) to be cost O if m; ; = m.,., else oo

e FiNd S7(a;,b;) USINg S _ 'S

— Either S} _,(a;, b;) or

(O(d), d =dim(M))

— Best sequence that prepends (a;, bj) 10 S}, _ (aact, bRr(a,))

Sék(ao, b()) ?

S;(CLQ, b()) Cost 55
S;(al, b()) Cost 37
S;(ag, b()) Cost 40

M1 | bg b1 b
ap | 25 1 0
ap | 10 30 10
a2 0 33 40
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Dynamic Programming Algorithm

e Define S (a;,b;) = optimal sequence of length n

e Define S;(a;, b;) to be cost O if m; ; = m.,., else oo

e FiNd S7(a;,b;) USINg S _ 'S
— Either S} _,(a;, b;) or
— Best sequence that prepends (a;, bj) 10 S}, _ (aact, bRr(a,))

Sék(ao, b()) Cost 52
S;(CLQ, b()) Cost 55
S;(al, b()) Cost 37+15
Sg (ag, b()) Cost 40+15

(O(d), d =dim(M))

M1 | bg b1 b
ap | 25 1 0
ap | 10 30 10
a2 0 33 40
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Dynamic Programming Algorithm

e Define S’ (a4, b;) = optimal sequence of length n

e Define Sj(a;,b;) to be cost 0 if m; ; = m.,, else oo

e FiNnd S (a;,b;) Using S _ s (O(d), d =dim(M))
— Either S _,(a;,b;) or
— Best sequence that prepends (a;, b;) 10 S _1 (Gact, bBR(a;))
e Sufficient to calculate S*(a;, by), Vi < x loop O(d?)
— How high do we need to let n get?
S;(CLQ, bo) Cost 52 M1 | by b1 b
S;(CLO, bo) Cost 55 ao 29 1 0
S;‘(al, bo) Cost 37+15 a1 10 30 10
Sg (CZQ, bo) Cost 40+15 a9 0 33 40

g
£
B
§
3
£

© 2009 Peter Stone



Maximal Sequence Length

e Recdall: Agent A has x actions, Agent B has y

e Theorem: No sequence is longer than min(zx, y)
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Maximal Sequence Length

e Recdall: Agent A has x actions, Agent B has y

e Theorem: No sequence is longer than min(zx, y)

— Nelther agent takes the same action fwice
— Oftherwise, part of the sequence could be excised
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Maximal Sequence Length

e Recdall: Agent A has x actions, Agent B has y

e Theorem: No sequence is longer than min(zx, y)

— Nelther agent takes the same action fwice
— Oftherwise, part of the sequence could be excised

e Theorem: 4\ with optimal sequence min(z, y)
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Maximal Sequence Length

e Recdall: Agent A has x actions, Agent B has y

e Theorem: No sequence is longer than min(x, y)
— Neither agent takes the same action twice

— Oftherwise, part of the sequence could be excised

e Theorem: 4\ with optimal sequence min(z, y)

M2 bo by bs - by 3 by_2 by 1
ao 100 — & 0 0 - 0 0 0
a; | 100 —25 100 —§ 0 0 0
as 0 100 — 25 100 — 6 : 0

Gy 0 . 100 — § 0 0

Qg9 0 0 : 100 — 25 100 — & 0

a1 D 0 0 - 0 100 — 25 100
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Maximal Sequence Length

e Recdall: Agent A has x actions, Agent B has y

e Theorem: No sequence is longer than min(x, y)
— Neither agent takes the same action twice

— Oftherwise, part of the sequence could be excised

e Theorem: 4\ with optimal sequence min(z, y)

M2 bo by bs - b, 3 by 2 by, 1
ao 100 — & 0 0 - 0 0 0
a; | 100 —25 100 -6 0 0 0
as 0 100 — 25 100 — 6 : 0

Qp_3 0 . 100 — § 0 0

Q9 0 0 : 100 — 25 100 — & 0

a1 D 0 0 - 0 100 — 25 100
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Questions

e Find the optimal action sequence efficiently? O(d?)
e Maximum length of optimal sequences? min(z, y)
Cases

e Deterministic teammate, 1-step memory (mem=1, ¢ = 0)
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Questions

e Find the optimal action sequence efficiently?
e Maximum length of optimal sequences?

Cases
o
e LOonger tfeammate memory (mem>1,e=0)
o
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Longer Teammate Memory

e Algorithm extends naturally, but exponential in mem

— Need §* _, for every possible history of Agent A actions

— Reaching m* once noft sufficient (“stability”)
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Longer Teammate Memory

e Algorithm extends naturally, but exponential in mem

— Need §* _, for every possible history of Agent A actions

— Reaching m* once noft sufficient (“stability”)

M3 | bg b1 b

History lag; aq; ap) ap | 0 30 50
Response by ap | 41 20 O
as | 99 20 100
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Longer Teammate Memory

e Algorithm extends naturally, but exponential in mem

— Need §* _, for every possible history of Agent A actions

— Reaching m* once noft sufficient (“stability”)

M3 | bg b1 b

History lag; as; aq] ap | 0 30 50
Response by ap | 41 20 O
as | 99 20 100
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Longer Teammate Memory

e Algorithm extends naturally, but exponential in mem

— Need §* _, for every possible history of Agent A actions

— Reaching m* once noft sufficient (“stability”)

History [as; as; as)]
Response by

M3| by by b
ap | 0 30 50
ap | 41 20 0
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Longer Teammate Memory

e Algorithm extends naturally, but exponential in mem

— Need §* _, for every possible history of Agent A actions

— Reaching m* once noft sufficient (“stability”)

M3 | bg by b

History (ag; as; as] ap | 0 30 50
Response by ap | 41 20 O

— NP-hard: reduction from Hamiltonian Path (Littman)
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Longer Teammate Memory

e Theorem: 3V with optimal seq. (min(z,y) — 1) * mem + 1

e Conjecture: No seq. longer than (min(x,y) — 1) x mem + 1
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Longer Teammate Memory

e Theorem: 3V with optimal seq. (min(z,y) — 1) * mem + 1

e Conjecture: No seq. longer than (min(x,y) — 1) x mem + 1

— Can only prove no seq. longer than min(z, y) * z™¢m 1
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Longer Teammate Memory

e Theorem: 3V with optimal seq. (min(z,y) — 1) * mem + 1

e Conjecture: No seq. longer than (min(x,y) — 1) x mem + 1

— Can only prove no seq. longer than min(z, y) * z™¢m 1

M?2 bo by ba by 3 by 2 by 1
ao 100 — ¢ 0 0 0 0 0
a; | 100 —25 100 —§ 0 = 0 0
as 0 100 — 25 100 — 6 : 0
Q3 0 s 100 — & 0 0
Ay 0 0 : 100 — 26 100 — & 0
Q1 D 0 0 0 100 — 25 100
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Questions

e Find the optimal action sequence efficiently? gle
e Maximum length of optimal sequences? ?
Cases

o
e LOonger tfeammate memory (mem>1,e=0)
o
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Questions

e Find the optimal action sequence efficiently?
e Maximum length of optimal sequences?

Cases
o
o
e Teammate non-determinism (mem>1,¢e¢>0)
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Teammate Non-Determinism

® EV(CLi,bj) — (1 )m” + = (Zy o i, k)
— Cost now sum of m* — EV(a;, b;) over sequence
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Teammate Non-Determinism

o EV(a;,b;) =(1—¢€)m; ; + (Zk Omz k)

— Cost now sum of m* — EV(a;, b;) over sequence
— m* now maximum EV/(a;, b;) iIn M
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Teammate Non-Determinism

o EV(a;,b;) =(1—¢€)m; ; + (Zk Omz k)

— Cost now sum of m* — EV(a;, b;) over sequence
— m* now maximum EV/(a;, b;) iIn M

e Jarget” (m*) can change:
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Teammate Non-Determinism

o EV(a;,b;) =(1—¢€)m; ; + (Zk Omz k)

— Cost now sum of m* — EV(a;, b;) over sequence
— m* now maximum EV/(a;, b;) iIn M

e farget” (m*) can change: S*(aq, by) With mem=3
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Teammate Non-Determinism

o E\/(ai,bj) — (1

— Cost now sum of m* — EV(a;,

eymi g+ S(1 2 M)

b;) over sequence

— m* now maximum EV/(a;, b;) iIn M
e farget” (m*) can change: S*(aq, by) With mem=3
M4 | by by by b
e=0. m.af(as,b3) L(S*)=10 S L B
N . ap |20 0 O O
e=0.1: m,dqa (CL3, 3) _(S )=8
N . a; |88 90 99 &0
e=0.3: m,d (ag,bg) | (S*)=3
€ — O 4. m O (CLQ b2) (S*)=3 a2 70 98 99 80
o i ’ ) asz | 70 70 98 100
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Teammate Non-Determinism

o E\/(ai,bj) — (1

— Cost now sum of m* — EV/(a,,
— m* now maximum EV/(a,,

eymi g+ S(1 2 M)

bj) N

M

b;) over sequence

e farget” (m*) can change: S*(aq, by) With mem=3

e =0:

e =0.1:
e =0.3:
e = 0.4

e Algorithm and theorems hold unchanged

ms AT
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ms AT
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(as, b3)
(as, bs)
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M4
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b1
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Teammate Non-Determinism

o E\/(ai,bj) — (1

— Cost now sum of m* — EV/(a,,
— m* now maximum EV/(a,,

eymi g+ S(1 2 M)

bj) N

M

b;) over sequence

e farget” (m*) can change: S*(aq, by) With mem=3

e =0:

e =0.1:
e =0.3:
e = 0.4

e Algorithm and theorems hold unchanged

ms AT

(as, b3)

ms AT (a

ms AT
ms AT

(as, b3)
(as, bs)
( )

az, b2

— Exceptwhene=1

L(5")=10
L (5*)=8
L(5*)=3

L(5*)=3

M4

bo

b1

ba b3

25
88
70
70

0

0 0

90 99 &0
98 99 &0
70 98 100
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Questions

e Find the optimal action sequence efficiently? gle
e Maximum length of optimal sequences? ?
Cases

o
o
e Teammate non-determinism (mem>1,¢e¢>0)
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Experiments

e All variations of the algorithm fully implemented
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Experiments

e All variations of the algorithm fully implemented
e [est frequency of longest S* of varying lengths
— 3x3 matrix: how often L(S*(a;,b;)) = 37

" Departiment of Computer Sciences
Um The University of Texas at Austin © 2009 Pe.l.er S'I'Oﬂe




Experiments

e All variations of the algorithm fully implemented

e [est frequency of longest S* of varying lengths
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Experiments

e All variations of the algorithm fully implemented

e [est frequency of longest S* of varying lengths
— 3x3 matrix: how often L(S*(a;,b;)) = 37

e m,; ; Uniformly random in [0, 100]; m,—1 ,—1 = 100

mem=1 ] 2 3 4 5 6 7 8 9
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3 x3 104 852 44
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Experiments

e All variations of the algorithm fully implemented

e [est frequency of longest S* of varying lengths
— 3x3 matrix: how often L(S*(a;,b;)) = 37
e m,; ; Uniformly random in [0, 100]; m,—1 ,—1 = 100

mem-=1 ] 2 3 4 5 6 7 8 9 10
3x3 104 852 44

4 x4 12 825 158 5

5% 5 3 662 316 19 O

6 x 6 O 465 489 45 1 O

TxT O 349 565 8I 5 0 O

8 X 8 0O 236 86 159 8 1 0 O

9x%x9 0 145 640 193 20 2 0O O O

10 x 10 0 72 636 263 29 0O O O O O
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Experiments

mem-=1 ] 2 3 4 5 6 7 8 9 10

3 x3 104 852 44

4 x4 12 825 158 5

5% 5 3 662 316 19 O

6 x 6 O 465 489 45 1 O

7T 0 349 565 81 5 0 0

8 X 8 0O 236 596 159 8 1 0 O

9x%x9 0 145 640 193 20 2 0O 0O O

10 x 10 0 /72 636 263 29 0 0O O O O
mem=3 | 1 2 3 4 ) 6 / 8 9 10 11
3x3 8 178 344 340 28 8 4 O 0 0 O
4 x 4 15 76 266 428 134 60 21 O 0O 0 O
5% 5 ] 19 115 408 234 145 71 / 0 0 O
6 %6 0 0 22 282 272 222 164 27 11 0 O
7Tx T 0 0 o) 116 293 282 220 55 17 10 1
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Robot Experiments

e INn progress. ..
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Related Work

Game Theory

e Multiagent learning (ciaus & Boutiier, 98),(Littman, 01,

(Conitzer & Sandholm, ‘03),(Powers & Shoham, ‘05),(Chakraborty & Stone, ‘08)
e EConomic repeated games Hart & Mas-Colell, ‘00),(Neyman & Okada, ‘00)
e Fictitious play @own, 51)
o Adaptive play woung, 93

Opponent Modeling

e INnfended plan recognition idner, ‘85).(Lochbaum;91).(Carberry, ‘01)
e SharedPlans Grosz & kraus, '96)
e Recursive Modeling idal & durtee, 95)
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Ad Hoc Teams

e Ad hoc team player is an individudl
— Unknown teammates (programmed by others)

e May or may not be able to communicate
o Tec:mmq"res kely su\b—qp’rimol: gle c_:onrol_

Bt D e

Goal: Create a good team player

e Minimal representative scenarios
— One feammate, no communication
— Fixed and known behavior: best response
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Scenarios

e Cooperative k-armed bandit (w/ Kraus)
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3-armed bandit

e Random value from a distribution
e Expected value u
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3-armed bandit
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3-armed bandit

2 > 1 > 2

e Agent A; tfeacher
— Knows payoff distributions
— Objective: maximize expected sum of payoffs
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3-armed bandit

2 > 1 > 2

e Agent A; tfeacher
— Knows payoff distributions
— Objective: maximize expected sum of payoffs
— If alone, always Arm.,
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3-armed bandit

2 > 1 > 2

e Agent A: feacher
— Knows payoff disfributions
— Objective: maximize expected sum of payoffs
— If alone, always Arm,

e Agent B: learner
— Can only pull Arm; or Arms
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3-armed bandit

2 > 1 > 2

e Agent A: feacher
— Knows payoff disfributions
— Objective: maximize expected sum of payoffs
— If alone, always Arm,

e Agent B: learner
— Can only pull Arm; or Arms
— Selects arm with highest olbserved sample average
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Assumptions
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Assumptions

e Alfernate actions (teacher first)

e Results of all actions fully obbservable (fo both)
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Assumptions

e Alternate actions (tfeacher first)
e Results of all actions fully obbservable (fo both)

e Number of rounds remaining finite, known to teacher
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Assumptions

e Alternate actions (tfeacher first)
e Results of all actions fully obbservable (fo both)

e Number of rounds remaining finite, known to teacher

Objective: maximize expected sum of payoffs
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Formalism

o 11;; expected payoff of Arm; (¢ € {1,2,x})

— Assume ., > u1 > pes only interesting case

" Departiment of Computer Sciences
Um The University of Texas at Austin © 2009 Pe.l.er S'I'Oﬂe



Formalism

o 11;; expected payoff of Arm; (¢ € {1,2,x})
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e m,;; cumulative payoff from past pulls of Arm;
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Formalism

o 11;; expected payoff of Arm; (¢ € {1,2,x})

— Assume ., > u1 > pes only interesting case
e 1;; NUMpPer of times Arm; has been pulled
e m,;; cumulative payoff from past pulls of Arm;

o 7; = L Observed sample average so far

e . NUuMber of rounds left

Which arm should the teacher pull, as a
function of » and all the y;, n;, and z,?
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Teacher should consider Arm;

i
— -
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Teacher should consider Arm;

T =

00 O
2100 O
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Teacher should consider Arm;

T =

00 O
2100 O
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Teacher should consider Arm;

T =

m;

T Lj

0.0
7.0

0
1170
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Teacher should consider Arm;

T =

m;
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0.0
7.0

0
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Teacher should consider Arm;

T =

m;

T Lj

6.0
/7.0

1160
1170
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Teacher should consider Arm;

T =

m;

T Lj

6.0
/7.0

1160
1170

e feacher Arm; expected value:
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Teacher should consider Arm;

T =

60 1160
/70 1170

e feacher Arm; expected value:

— Define n: probability Army returns > 8
— Assume: 1 > 2
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Teacher should consider Arm;

T =

60 11|60
/70 1170

e feacher Arm; expected value:

— Define n: probability Army returns > 8
— Assume: 1 > 2
— EVi g +npa + (1 —n)pe
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Teacher should consider Arm;

T =

60 11|60
/70 1170

e feacher Arm; expected value:

— Define n: probability Army returns > 8
— Assume: 1 > 2
— EV: oy +mpn + (1 — ) po >9+%+§:16
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Teacher should consider Arm;

r =
6.0 1160
/70 1170

e feacher Arm; expected value:

— Define n: probability Arm; returns > 8

— Assume: 1 > 2

— EV: oy +mpn + (1 — ) po >9+%+§:16
e feacher Arm, expected value:

— EV ,u* _|_,UJ2

Ur‘[m Department of Computer Sciences
i
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Teacher should consider Arm;

r =
6.0 1160
/70 1170

e feacher Arm; expected value:

— Define n: probability Arm; returns > 8

— Assume: 1 > 2

— EV: oy +mpn + (1 — ) po >9+%+§:16
e feacher Arm, expected value:

— EV: py + o =15

Ur‘[m Department of Computer Sciences
i
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Should teacher consider Arm,?

e r1 < Ty —> NO
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Should teacher consider Arm,?

e r1 < Ty —> NO

— Sequence of values from Arma: ug, u1, ua, . . .
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Should teacher consider Arm,?

e r1 < Ty —> NO

— Sequence of values from Arma: ug, u1, ua, . . .
— Opftfimal from Arms: ug
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Should teacher consider Arm,?

e r1 < Ty —> NO

— Sequence of values from Arma: ug, u1, ua, . . .
— Optimal from Arms: ug, a
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Should teacher consider Arm,?

e r1 < Ty —> NO

— Sequence of values from Arma: ug, u1, ua, . . .
— Optimal from Arms: ug,a, b, c,d,e, ... w,x,y, 2
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Should teacher consider Arm,?

e r1 < Ty —> NO

— Sequence of values from Arma: ug, u1, ua, . . .

— Optimal from Arms: ug,a, b, c,d,e, ... w,x,y, 2
— Also possible: .
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Should teacher consider Arm,?

e r1 < Ty —> NO

— Sequence of values from Arma: ug, u1, ua, . . .

— Optimal from Arms: ug,a, b, c,d,e, ... w,x,y, 2
— Also possible: Lhse, UQ, M
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Should teacher consider Arm,?

e r1 < Ty —> NO

— Sequence of values from Arma: ug, u1, ua, . . .

— Optimal from Arms: ug,a, b, c,d,e, ... w,x,y, 2
— Also possible: Lhse, UQy sy @
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Should teacher consider Arm,?

e r1 < Ty —> NO

— Sequence of values from Arma: ug, u1, ua, . . .
— Optimal from Arms: ug,a, b, c,d,e, ... w,x,y, 2
— Also possible: s, U,y Uy, @, b, Cyd, e, ... w, x
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Should teacher consider Arm,?

e r1 < Ty —> NO

— Sequence of values from Arma: ug, u1, ua, . . .
— Optimal from Arms: ug,a, b, c,d,e, ... w,x,y, 2
— Also possible: s, U,y Uy, @, b, Cyd, e, ... w, x

I > Ty —7
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Should teacher consider Arm,?

e r1 < Ty —> NO

— Sequence of values from Arma: ug, u1, ua, . . .

— Optimal from Arms: ug,a, b, c,d,e, ... w,x,y, 2

— Also possible: s, U,y Uy, @, b, Cyd, e, ... w, x
I > Ty —7

— Subtle, but still no
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Should teacher consider Arm,?

e r1 < Ty —> NO

— Sequence of values from Arma: ug, u1, ua, . . .
— Optimal from Arms: ug,a, b, c,d,e, ... w,x,y, 2
— Also possible: s, U,y Uy, @, b, Cyd, e, ... w, x

I > Ty —7

— Subftle, but sfill no
— Chadllenge: prove it!
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Never teach when z; > 7»

e Same proof
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Never teach when z; > 7»

e Same proof

— Sequence of values from Arms: vy, v1, va, . . .
— Optimal from Army: vg,a, b, c,d,e, ... w,x,y, 2
— Also possible: s, Vg, Uy, @, b, Cdy e, ..., w, x
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Never teach when z; > 7»

e Same proof

— Sequence of values from Arms: vy, v1, va, . . .

— Optimal from Army: vg,a, b, c,d,e, ... w,x,y, 2

— Also possible: s, Vg, Uy, @, b, Cdy e, ..., w, x
e Only need to consider Arm; when 77 < 25

— Depends on distributions
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Never teach when z; > 7»

e Same proof

— Sequence of values from Arms: vy, v1, va, . . .
— Optimal from Army: vg,a, b, c,d,e, ... w,x,y, 2
— Also possible: s, Vg, Uy, @, b, Cdy e, ..., w, x

e Only need to consider Arm; when 77 < 25

— Depends on distributions
— Consider binary and normall
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Arms with Binary Distributions

. 1 with probability p
0 with probability 1 — p
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Arms with Binary Distributions

. 1 with probability p
0 with probability 1 — p
uw; = p; m; =number of 1's so far
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Arms with Binary Distributions, » = 1
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Arms with Binary Distributions, » = 1

e Consider teaching if

1. r1 < T9

" Departiment of Computer Sciences
Um The University of Texas at Austin © 2009 Pe.l.er S'I'Oﬂe



Arms with Binary Distributions, » = 1

P >

e Consider teaching if

]..f1<f2 = -
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Arms with Binary Distributions, » = 1

e Consider teaching if

— — _ m1 mo
.I $1 < xQ — n_l n—2
2. It could help: T4 > 12
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Arms with Binary Distributions, » = 1

P > P1
e Consider teaching if

— — - ™m m
.I $1<£U2 p— =1 ’I’L_22

ni
2. It could help: 715 > 2

n2

e feacher Arm, expected value:

Dx + D2
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Arms with Binary Distributions, » = 1

P > P1 > P2
e Consider teaching if

— — _ m1 mo
.I $1 < xQ — n_l n—2
2. It could help: T4 > 12

e feacher Arm, expected value: p, + ps

e feacher Arm; expected value: p;
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Arms with Binary Distributions, » = 1

P« > P1 >
e Consider teaching if

— — - ™m m
.I $1<£U2 p— =1 ’I’L_22

ni
2. It could help: 715 > 2

n2

e feacher Arm, expected value: p, + ps

e Teacher Arm; expected value: p; + p1 * p1
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Arms with Binary Distributions, » = 1

P > P1
e Consider teaching if

1. r1 < Iy — -
2. It could help: 715 > 2

n2

e feacher Arm, expected value: p, + ps

e Teacher Arm; expected value: p; + p1 * p1 + (1 — p1)p2
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Arms with Binary Distributions, » = 1

P > P1
e Consider teaching if

1. r1 < T9 = n
2. It could help: ml“ > M2

n2

e feacher Arm, expected value: p, + ps

e Teacher Arm; expected value: p; + p1 * p1 + (1 — p1)p2

Teach iff conditions 1, 2, and p.. — p1 < p1(p1 — p2)

© 2009 Peter Stone



Algorithm for Optimal Teacher Action

e Polynomial algorithm finds optimal feacher action

— Takes starting values M, N1, My, No and R
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Algorithm for Optimal Teacher Action

e Polynomial algorithm finds optimal feacher action

— Takes starting values M, N1, My, No and R

e Dynamic programming

— Works backwards from r =1
— Considers all reachable values of mq, nq, ma, ns
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Algorithm for Optimal Teacher Action

e Polynomial algorithm finds optimal feacher action

— Takes starting values M, N1, My, No and R

e Dynamic programming

— Works backwards from r =1
— Considers all reachable values of mq, nq, ma, ns

e O(r°) in both memory and runtime
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Arms with Normal Distributions
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Arms with Normal Distributions, » = 1
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Arms with Normal Distributions, » = 1

e Cost of teaching: . — 11
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Arms with Normal Distributions, » = 1

(M*v 0) (:ula U)

e Cost of teaching: . — 11

e Benefit of teaching if successful: pq — o
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Arms with Normal Distributions, » = 1

(M*v 0) (:ula U)

e Cost of teaching: . — 11

e Benefit of teaching if successful: iy — o (1 < T3)
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Arms with Normal Distributions, » = 1

e Cost of teaching: . — 11
e Benefit of teaching if successful: pq — o (1 < T2)

e Probability it’s successful: 1 — @, », (z2(n1 +1) —x1n1)

— Cumulative probability that pulling Army causes z; > -
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Arms with Normal Distributions, » = 1

e Cost of teaching: . — 11
e Benefit of teaching if successful: pq — o (1 < T2)

e Probability it’s successful: 1 — @, », (z2(n1 +1) —x1n1)

— Cumulative probability that pulling Army causes z; > -

Teach iff 1 — &, , (#2(ny + 1) — 1ny) > L=l
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Arms with Normal Distributions, » > 2

e Can solve computationally — nested infegral

e NoT exactly, nor efficiently
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Arms with Normal Distributions, » > 2

e Can solve computationally — nested infegral
e NoT exactly, nor efficiently

e Can you find an efficient algorithm?
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Experiments

e Evaluating feacher heuristics
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Experiments

e Evaluating teacher heuristics

1. Never teach
2. Teach iff z;1 < 9
3. Teach iff it would be optimal to teach if r =1
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Experiments

e Evaluating teacher heuristics

1. Never teach

2. Teach iff z;1 < 9
3. Teach iff it would be optimal to teach if r =1

— None dominates
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Experiments

e Evaluating teacher heuristics

1. Never teach
2. Teach iff z;1 < 9
3. Teach iff it would be optimal to teach if r =1

— None dominates

e LOoOking for patterns in optimal action as a function of r
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e Evaluating teacher heuristics

1. Never teach
2. Teach iff z;1 < 9
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— None dominates

e LOoOking for patterns in optimal action as a function of r
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Experiments

e Evaluating teacher heuristics

1. Never teach
2. Teach iff z;1 < 9
3. Teach iff it would be optimal to teach if r =1

— None dominates

e LOoOking for patterns in optimal action as a function of r

— Conjecture: teach when r = 1 — tfeach when r = 2
— Falsel
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Experiments

e Evaluating teacher heuristics

1. Never teach
2. Teach iff z;1 < 9
3. Teach iff it would be optimal to teach if r =1

— None dominates

e LOoOking for patterns in optimal action as a function of r

— Conjecture: teach when r = 1 — tfeach when r = 2
— False! (binary and normal)
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More than 3 arms

Arm., Arm,; Arm; Arms  Arms;
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More than 3 arms
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More than 3 arms

e Additional arms for teacher make no difference

— Ignore all but the best

e Additional learner arms: most results generalize naturally

— Never teach with Arm, (Arm;—Arm.__; possible)

— Never teach with Arm; when z; > z,;,Vj # 1

— Surprising: May be best to feach with Arm;, for j > i
(tfeach with Arm,, even though =1 > zo > 3)

© 2009 Peter Stone



Sample Open Questions
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Sample Open Questions

e What if the tfeacher doesn’t know the distributions?

— Exploration vs. exploitation vs. teaching
e What if the learner isn’t greedy: explores on its own"?
e How does this extend to the infinite (discounted) case?

e What if there are mulfiple learners?
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Ad Hoc Teams

e Ad hoc tfeam player is an individudl
— Unknown teammates (programmed by others)

e May or may not be able fo communicate

e fTeammartes likely sub-optimal: no control

Goal: Create a good team player
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Ad Hoc Teams

e Ad hoc tfeam player is an individudl
— Unknown teammates (programmed by others)

e May or may not be able fo communicate

e fTeammartes likely sub-optimal: no control
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Goal: Create a good team player

— So far: Minimal representative scenarios
— Future: Unknown teammate behavior, communication,
iIncomplete feacher knowledge.. ..
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Ad Hoc Teams

e Ad hoc tfeam player is an individudl
— Unknown feammates (programmed by others)

e May or may not be able fo communicate

Goal: Creafte a good team player

— So far: Minimal representative scenarios
— Future: Unknown teammate behavior, communication,
Incomplete feacher knowledge.. .. much morel
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