CS344M
Automonomous Multiagent Systems

Prof: Peter Stone

Department of Computer Science
The University of Texas at Austin
Good Afternoon, Colleagues

Are there any questions?
Logistics

- How to read a research paper
Logistics

- How to read a research paper
 - Some have too few details...
Logistics

- How to read a research paper
 - Some have too few details...
 - Others have too many.
Logistics

- How to read a research paper
 - Some have too few details...
 - Others have too many.

- Next week’s readings posted
Logistics

- How to read a research paper
 - Some have too few details...
 - Others have too many.

- Next week’s readings posted

- FAI talk Thursday in ACES 2.402, 2pm
Logistics

- How to read a research paper
 - Some have too few details...
 - Others have too many.

- Next week’s readings posted

- FAI talk Thursday in ACES 2.402, 2pm
 - Philip Resnick: “Translation as Collaboration”
Logistics

- How to read a research paper
 - Some have too few details...
 - Others have too many.

- Next week’s readings posted

- FAI talk Thursday in ACES 2.402, 2pm
 - Philip Resnick: “Translation as Collaboration”

- Thesis proposal Wednesday in ACES 3.116, 8:45am
Logistics

- How to read a research paper
 - Some have too few details...
 - Others have too many.

- Next week’s readings posted

- FAI talk Thursday in ACES 2.402, 2pm
 - Philip Resnick: “Translation as Collaboration”

- Thesis proposal Wednesday in ACES 3.116, 8:45am
 - Todd Hester: “Temporal Difference Reinforcement Learning in Time-Constrained Domains”
Logistics

- How to read a research paper
 - Some have too few details...
 - Others have too many.

- Next week’s readings posted

- FAI talk Thursday in ACES 2.402, 2pm
 - Philip Resnick: “Translation as Collaboration”

- Thesis proposal Wednesday in ACES 3.116, 8:45am
 - Todd Hester: “Temporal Difference Reinforcement Learning in Time-Constrained Domains”

- Final project proposal assigned
Final Projects

Proposal (10/7): 3+ pages

• What you’re going to do; graded on writing
Final Projects

Proposal (10/7): 3+ pages
• What you’re going to do; graded on writing

Progress Report (11/4): 5+ pages + binaries + logs
• What you’ve been doing; graded on writing
Final Projects

Proposal (10/7): 3+ pages
- What you’re going to do; graded on writing

Progress Report (11/4): 5+ pages + binaries + logs
- What you’ve been doing; graded on writing

Team (11/30): source + binaries
- The tournament entry; make sure it runs!
Final Projects

Proposal (10/7): 3+ pages
 • What you’re going to do; graded on writing

Progress Report (11/4): 5+ pages + binaries + logs
 • What you’ve been doing; graded on writing

Team (11/30): source + binaries
 • The tournament entry; make sure it runs!

Final Report (12/2): 8+ pages
 • A term paper; the main component of your grade
Final Projects

Proposal (10/7): 3+ pages
 • What you’re going to do; graded on writing

Progress Report (11/4): 5+ pages + binaries + logs
 • What you’ve been doing; graded on writing

Team (11/30): source + binaries
 • The tournament entry; make sure it runs!

Final Report (12/2): 8+ pages
 • A term paper; the main component of your grade

Tournament (TBA): nothing due
 • Oral presentation
Final Projects

Proposal (10/7): 3+ pages
 • What you’re going to do; graded on writing

Progress Report (11/4): 5+ pages + binaries + logs
 • What you’ve been doing; graded on writing

Team (11/30): source + binaries
 • The tournament entry; make sure it runs!

Final Report (12/2): 8+ pages
 • A term paper; the main component of your grade

Tournament (TBA): nothing due
 • Oral presentation

Due at beginning of classes
Overview of the Readings

Darwin: genetic programming approach
Overview of the Readings

Darwin: genetic programming approach

Stone and McAllester: Architecture for action selection
Overview of the Readings

Darwin: genetic programming approach

Stone and McAllester: Architecture for action selection

Riley: Coach competition, extracting models
Overview of the Readings

Darwin: genetic programming approach

Stone and McAllester: Architecture for action selection

Riley: Coach competition, extracting models

Kuhlmann: Learning for coaching
Overview of the Readings

Darwin: genetic programming approach

Stone and McAllester: Architecture for action selection

Riley: Coach competition, extracting models

Kuhlmann: Learning for coaching

Riedmiller05: Reinforcement learning
Overview of the Readings

Darwin: genetic programming approach

Stone and McAllester: Architecture for action selection

Riley: Coach competition, extracting models

Kuhlmann: Learning for coaching

Riedmiller05: Reinforcement learning

Graf: Closed loop walk on real robots
Overview of the Readings

Darwin: genetic programming approach

Stone and McAllester: Architecture for action selection

Riley: Coach competition, extracting models

Kuhlmann: Learning for coaching

Riedmiller05: Reinforcement learning

Graf: Closed loop walk on real robots

Shafii: Open loop walk in 3d simulator
Evolutionary Computation

- Motivated by biological evolution: GA, GP
Evolutionary Computation

- Motivated by biological evolution: GA, GP
- Search through a space
Evolutionary Computation

- Motivated by biological evolution: GA, GP

- Search through a space
 - Need a **representation, fitness function**
 - Probabilistically apply search operators to set of points in search space
Evolutionary Computation

- Motivated by biological evolution: GA, GP

- Search through a space
 - Need a *representation, fitness function*
 - Probabilistically apply search operators to set of points in search space

- Randomized, parallel hill-climbing through space
Evolutionary Computation

- Motivated by biological evolution: GA, GP
- Search through a space
 - Need a representation, fitness function
 - Probabilistically apply search operators to set of points in search space
- Randomized, parallel hill-climbing through space
- Learning is an optimization problem (fitness)
Evolutionary Computation

- Motivated by biological evolution: GA, GP
- Search through a space
 - Need a representation, fitness function
 - Probabilistically apply search operators to set of points in search space
- Randomized, parallel hill-climbing through space
- Learning is an optimization problem (fitness)

Some slides from *Machine Learning* (Mitchell, 1997)
Darwin United

- More ambitious follow-up to Luke, 97 (made 2nd round)
Darwin United

- More ambitious follow-up to Luke, 97 (made 2nd round)
- Motivated in part by my detailed team construction
Darwin United

- More ambitious follow-up to Luke, 97 (made 2nd round)
- Motivated in part by my detailed team construction
- Evolves whole teams — lexicographic fitness function
Darwin United

- More ambitious follow-up to Luke, 97 (made 2nd round)
- Motivated in part by my detailed team construction
- Evolves whole teams — lexicographic fitness function
- Evolved on huge (at the time) hypercube
Darwin United

- More ambitious follow-up to Luke, 97 (made 2nd round)
- Motivated in part by my detailed team construction
- Evolves whole teams — lexicographic fitness function
- Evolved on huge (at the time) hypercube
- Lots of spinning, but figured out dribbling, offsides
Darwin United

- More ambitious follow-up to Luke, 97 (made 2nd round)
- Motivated in part by my detailed team construction
- Evolves whole teams — lexicographic fitness function
- Evolved on huge (at the time) hypercube
- Lots of spinning, but figured out dribbling, offsides
- 1-1-1 record. Tied a good team, but didn’t advance
Darwin United

- More ambitious follow-up to Luke, 97 (made 2nd round)
- Motivated in part by my detailed team construction
- Evolves whole teams — lexicographic fitness function
- Evolved on huge (at the time) hypercube
- Lots of spinning, but figured out dribbling, offsides
- 1-1-1 record. Tied a good team, but didn’t advance
- Success of the method, but not pursued
Architecture for Action Selection

- (other slides, video)
Architecture for Action Selection

- (other slides, video)
- downsides
Architecture for Action Selection

- (other slides, video)
- downsides
- don’t call “action selection”