CS344M
Autonomous Multiagent Systems

Prof: Peter Stone

Department of Computer Science
The University of Texas at Austin
Good Afternoon, Colleagues

Are there any questions?
Logistics

- Surveys due Wednesday at 9pm (12 as of this morning)
Logistics

- Surveys due Wednesday at 9pm (12 as of this morning)
- Next week’s readings posted
Logistics

- Surveys due Wednesday at 9pm (12 as of this morning)
- Next week’s readings posted
- AAMAS
Logistics

- Surveys due Wednesday at 9pm (12 as of this morning)
- Next week’s readings posted
- AAMAS
 - “It is hard to get help for things that don’t have much documentation. I understand that is how research works but typically deadlines for research are more than 15 weeks.”
Proposals

- Overall, very good!
Proposals

• Overall, very good!

• A few common problems:
Proposals

- Overall, very good!

- A few common problems:
 - No clear intro / problem statement
Proposals

• Overall, very good!

• A few common problems:
 – No clear intro / problem statement
 – Lots of “what” but very little “how”...
Proposals

- Overall, very good!

- A few common problems:
 - No clear intro / problem statement
 - Lots of “what” but very little “how”...
 - ... or too much how without identifying the challenges
Proposals

• Overall, very good!

• A few common problems:
 – No clear intro / problem statement
 – Lots of “what” but very little “how”…
 – …or too much how without identifying the challenges
 – Too much proposed
Proposals

- Overall, very good!

- A few common problems:
 - No clear intro / problem statement
 - Lots of “what” but very little “how”...
 - ... or too much how without identifying the challenges
 - Too much proposed
 - Not enough to convince me that it will work
Proposals

● Overall, very good!

● A few common problems:
 – No clear intro / problem statement
 – Lots of “what” but very little “how” . . .
 – . . . or too much how without identifying the challenges
 – Too much proposed
 – Not enough to convince me that it will work
 – No evaluation plan
Proposals

- Overall, very good!

- A few common problems:
 - No clear intro / problem statement
 - Lots of “what” but very little “how”...
 - ... or too much how without identifying the challenges
 - Too much proposed
 - Not enough to convince me that it will work
 - No evaluation plan

- Comments both from me and a TA
Progress reports

• Gather resources early
Progress reports

- Gather resources early
 - See UT Austin Villa keepaway page for java trainer code
Progress reports

● Gather resources early
 – See UT Austin Villa keepaway page for java trainer code
 – Soft arithmetic code in week 5 resources
Progress reports

- Gather resources early
 - See UT Austin Villa keepaway page for java trainer code
 - Soft arithmetic code in week 5 resources
 - AIJ ‘99 paper, Optimal scoring paper
Progress reports

- Gather resources early
 - See UT Austin Villa keepaway page for java trainer code
 - Soft arithmetic code in week 5 resources
 - AIJ ‘99 paper, Optimal scoring paper
 - Ask!
Progress reports

- Gather resources early
 - See UT Austin Villa keepaway page for java trainer code
 - Soft arithmetic code in week 5 resources
 - AIJ ‘99 paper, Optimal scoring paper
 - Ask!

- Consider making your own opponents for testing
Progress reports

• Gather resources early
 – See UT Austin Villa keepaway page for java trainer code
 – Soft arithmetic code in week 5 resources
 – AIJ ’99 paper, Optimal scoring paper
 – Ask!

• Consider making your own opponents for testing
• Consider changing simulator parameters for testing
Progress reports

• Gather resources early
 – See UT Austin Villa keepaway page for java trainer code
 – Soft arithmetic code in week 5 resources
 – AIJ ’99 paper, Optimal scoring paper
 – Ask!

• Consider making your own opponents for testing
• Consider changing simulator parameters for testing
• Will be stricter on progress reports
Progress reports

- Gather resources early
 - See UT Austin Villa keepaway page for java trainer code
 - Soft arithmetic code in week 5 resources
 - AIJ ’99 paper, Optimal scoring paper
 - Ask!

- Consider making your own opponents for testing

- Consider changing simulator parameters for testing

- Will be stricter on progress reports
 - May reflect side forrays
Progress reports

- Gather resources early
 - See UT Austin Villa keepaway page for java trainer code
 - Soft arithmetic code in week 5 resources
 - AIJ ‘99 paper, Optimal scoring paper
 - Ask!

- Consider making your own opponents for testing
- Consider changing simulator parameters for testing
- Will be stricter on progress reports
 - May reflect side forrays
 - Be more realistic
Progress reports

- Gather resources early
 - See UT Austin Villa keepaway page for java trainer code
 - Soft arithmetic code in week 5 resources
 - AIJ ’99 paper, Optimal scoring paper
 - Ask!

- Consider making your own opponents for testing

- Consider changing simulator parameters for testing

- Will be stricter on progress reports
 - May reflect side forrays
 - Be more realistic
 - Be much more specific
Progress reports

- Gather resources early
 - See UT Austin Villa keepaway page for java trainer code
 - Soft arithmetic code in week 5 resources
 - AIJ ’99 paper, Optimal scoring paper
 - Ask!

- Consider making your own opponents for testing

- Consider changing simulator parameters for testing

- Will be stricter on progress reports
 - May reflect side forays
 - Be more realistic
 - Be much more specific
 - Have something implemented and evaluated
Progress reports

- Gather resources early
 - See UT Austin Villa keepaway page for java trainer code
 - Soft arithmetic code in week 5 resources
 - AIJ ’99 paper, Optimal scoring paper
 - Ask!

- Consider making your own opponents for testing
- Consider changing simulator parameters for testing

- Will be stricter on progress reports
 - May reflect side forays
 - Be more realistic
 - Be much more specific
 - Have something implemented and evaluated
 - Return proposals with it
Kiva Systems

- Video (and RoboCup connection)
Kiva Systems

- Video (and RoboCup connection)
- Is Job Manager (JM) a single point of failure?
Kiva Systems

- Video (and RoboCup connection)
- Is Job Manager (JM) a single point of failure?
- How are collisions avoided with A*?
Kiva Systems

- Video (and RoboCup connection)
- Is Job Manager (JM) a single point of failure?
- How are collisions avoided with A*?
- If Drive Unit does path planning, how does the JM know how to allocate resources?
Kiva Systems

- Video (and RoboCup connection)
- Is Job Manager (JM) a single point of failure?
- How are collisions avoided with A*?
- If Drive Unit does path planning, how does the JM know how to allocate resources?
- How do they determine the ratio of pods to drive units to human pickers?
Kiva Systems

- Video (and RoboCup connection)
- Is Job Manager (JM) a single point of failure?
- How are collisions avoided with A*?
- If Drive Unit does path planning, how does the JM know how to allocate resources?
- How do they determine the ratio of pods to drive units to human pickers?
- What are the “over 100 message types”?

Peter Stone
Kiva Systems

- Video (and RoboCup connection)
- Is Job Manager (JM) a single point of failure?
- How are collisions avoided with A*?
- If Drive Unit does path planning, how does the JM know how to allocate resources?
- How do they determine the ratio of pods to drive units to human pickers?
- What are the “over 100 message types”?
- Could you outperform the warehouse system with a swarm?