The following is an attempt to describe in my own words the variable elimination
algorithm for determining optimal joint actions of coordinating agents. Each agent is
eliminated one at a time from a coordination graph by deciding the optimal local payoff
based on the payoff functions of dependent agents, then notifying the other agents of this
conditional decision. Specifically, the procedure for eliminating agent i is:

1. for each agent j in the graph that has a payoff rule dependent on the action of
agent i (child nodes of agent i)
- remove the dependent payoff rule of agent j
- add it to the payoff function for agent i
2. maximize the local payoff by determining which combinations of agent
actions will produce the greatest payoffs given the payoff function for agent i
3. distribute this conditional strategy to the agent that will be eliminated next
4. eliminate agent i from the graph
5. update the coordinated graph for new dependent relationships

Agents are eliminated with this process until only one agent remains. The last agent will
possess the optimal joint payoff of the coordinating agents in terms of its own available
actions. The optimal action of this agent is then propagated through the coordinated
graph in the reverse order that agents were eliminated, giving each agent along the way
enough information to decide what its own optimal action should be.

Here is a run-through of the example discussed in “Multi-robot decision making using
coordination graphs,” with an elimination order of Gz, G2, G;.

Elimination of G3:

G, <a; a3 4>
<aN-a 5>

G, < -ap D 2>

G, —>» Gs Gs <azMa 5>

G; sends G3 dependent rules:

G, <aN-a 5>

G, < -ap D 2>

Gs <azMa 5>

G, —» G3 <a; a3 4>




G3 determines that the maximum local payoff is <a

and distributes this to G. <ap " -ap
G, <aN-a 5>
\ G, < =ap D 2>
<ap 5>
G, —» G3 <aN-a 4>
Gs <azMa 5>
<a; N -az c 4>
Dependencies are updated and G3 is removed:
G, G, <aN-a 5>
G, < =ap D 2>
<ap 5>
G, <aM-a 4>
Elimination of G;:
G; sends G, dependent rules:
G <
G, < =ap D 2>
<ap 5>
G, <aN-a 4>
<aN-a 5>
G, determines that the maximum local payoff is <a; 11>
and distributes this to G; <-g; :5 >
G, G, <ai 11>
<-a; . 5>
G, < =ap D 2>
G, <ap 5>
<aN-a 4>
<aN-a 5>

G, is removed, leaving G; with the optimal decision of a;.

G, G <a 11>
<-a; . 5 >

5>
4>



G, distributes the decision of a; back to G,. Knowing that a; is now true, G,
chooses an optimal action of —a,:

G, < -ap D 2> G, <-a 11>
<ap : 5> <a, :5 >
<a; N -a c 4>
<aM-a 5>

G-, distributes the decision of a; and —a; back to Gs. Knowing that a; is true and
that a; is false, Gz chooses an optimal action of -as:

Gs <azMa 5> Gs <-az @ 4>

<a; N -az C 4>

The variable elimination algorithm should produce the same results, regardless of order.
Here is a run-through with an elimination order of G1, G3, Go.

Elimination of G;:

G <a; N -az 4>
<aN-a 5>

G, < =ap 2>

G, —» Gs Gs <azMa 5>

G; determines that the maximum local payoff is <-az @ 4>
and distributes this to Gs. <-a :5>

G <a; N -az 4>
\ <aM-a 5>

G, < =ap D 2>

G, —» Gs Gs <azMa 5>
< -a3 4>

< =ap 5>

G, is removed:

G, < =ap D 2>
Gs <azMa 5>
—p»| G
G ° < -a3 c 4>

< =ap 5>



Elimination of G3:

G3 determines that the maximum local payoff is <a; :5>

and distributes this to G, <-a; :9>
G, < =ap D 2>
G, —»| G3 S& 5>
< =ap 19>
Gs <azMa 5>
< -a3 c 4>
< =ap 5>

Gs is removed, leaving G, with the optimal decision of —a,.

G, G, < ap 5 >
<-a : 11>

G, distributes the decision of —a, back to G;. Knowing that a, is now false, G3
chooses an optimal action of —as:

Gs <azMa 5> Gs <-az :9>
< a3 c 4> <a3 :5>
< -ar 5>

G3 distributes the decision of -a, and —as back to G;. Knowing that a, and a3 are
false, G1 chooses an optimal action of a;:

G, <a; a3 4> G3 <ai 19>
<aM-a 5>



