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1 Introduction

One of the greatest difficulties about multiagent learning is that the environ-
ment is not stationary with respect to the agent. In case of single agent learning
problems, the agent has to maximize its expected reward with respect to an en-
vironment which is stationary. In case of multiagent scenarios, all the agents
learning simultaneously poses a problem of non-stationarity in the environment
which other agents have to take into account while computing their optimal
behavior in such situations. One of the popular frameworks of addressing the
problem of multiagent learning is the framework of stochastic games (SG) in-
troduced by Shapeley [9]. In the following section we would emphasize on the
SG framework and some of the well known algorithms that try to address the
problem of multiagent learning in the SG Model.

2 Stochastic Games

A stochastic game is a tuple (n, S, {Ai}, T, {Ri}) where n is the number of
agents in the system, S is the set of states in the system, Ai is the set of actions
that agent i can take, T is the transition function S × A × S → [0, 1] and Ri

is the reward function for agent i. The role of each agent is to maximize its
total reward if the interaction is for a limited time period T or maximize the
γ discounted reward if the interaction is for an infinite horizon. The solution
concept for optimality is Nash Equilibrium [10]. A Nash equilibrium is a col-
lection of strategies for each agent such that each agent ’s strategy is the best
response strategy with respect to strategies of all other agents in the system.
Nash showed that there always exists a Nash equilibrium in single stage games
(possibly multiple) though that equilibrium may not be in pure strategies. For
example in the game of matching pennies the only Nash equilibrium is when
both agents play head or tail with probability 0.5. The universal existence of
the Nash Equilibrium is not restricted to only single stage games but also in
stochastic games as proved by Shapley [9]. Now we present a brief overview of
the popular learning approaches and their restrictions from the literature.
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2.1 Minimax-Q

Littman introduced this reinforcement learning algorithm in 1994 that efficiently
computes the Nash equilibrium strategy for the agents in a zero-sum SG [8]. The
algorithm assumes that the game is of complete (the agents know their payoff
and hence their opponents) and perfect (the agents can see each other actions
at each time step) information. At each time step the agent gets an observation
< s, a, s′, r > consisting of a state, a joint-action, the next state and the reward
which its uses to update its Q-value pertaining to the joint action a at state s

as,

Q(s, a) ← (1− α)Q(s, a) + α(r + γV (s′))

where

V (s′) = maxσ∈PD(A1)mina2∈A2

∑

a1∈A1

σ(a1)×Q(s,< a1, a2 >)

where the value of V (s′) can be solved in polynomial time using linear pro-
gramming. Littman showed that the with the usual assumptions on exploration
and learning rate made by the single agent Q-learning algorithm, this technique
guarantees convergence to the unique Nash equilibrium in the SG game. Note,
a zero sum single stage game has only one Nash equilibrium and the correspond-
ing SG version of it also has just one Nash equilibrium which is the single stage
Nash equilibrium played at every stage.

2.2 Q-Learning for general sum stochastic games (Nash-
Q)

Hu and Wellman introduced this algorithm in 1998 that tries to compute a
Nash equilibrium strategy for each agent in general sum games. Assumptions of
complete and perfect information is maintained. The agent now has to maintain
Q values for every other agent. The entry Qk(s, a) approximates the average
discounted reward for agent k for playing action a in state s and then following
the Nash equilibrium strategy from there onwards for the remaining stages. At
each time step the agent gets an observation < s, a, s′, ri > consisting of a state,
a joint-action, the next state and the reward which its uses to update its Q-value
pertaining to the joint action a at state s as,

Qi(s, a) ← (1− α)Qi(s, a) + α(r + γV i(s′))

where

V i(s′) = V aluei[Q(s′)] (1)

2



where V i(s′) operation computes the equilibrium value from state s′. The
algorithm guarantees convergence to a Nash equilibrium under restricted set-
tings of the occurrence of a unique globally optimal Nash equilibrium which is
also a saddle point (the agent receives a higher payoff if other agents deviate
from their policies).

3 Repeated Games

We know shift to a special class of SG’s which we call repeated games (RG).
RG is a special form of SG with just one state. So the definition of RG is the
definition of SG without T . The agents keep playing the same single stage game
infinitely or finitely. We now highlight some of the popular approaches and their
merits and demerits when trying to solve the problem of computing the optimal
strategy profile for RG’s.

3.1 Fictitious Play (FP)

Fictitious Play [12] assumes opponents play stationary strategies which is
an empirical distribution of the opponent’s past actions. A variant of FP is
Bounded FP (BFP) where the agent computes a belief of the opponent’s past
actions through a recent window of opponent actions. When a player has mul-
tiple best replies, it chooses each with a strict positive probability. It can be
shown in fictitious play, the strategy profile converges to a Nash equilibrium
if the game is iterated dominance solvable [6] or cooperative [3]. And in zero
sum games, the empirical distribution of actions for the players converge to the
unique mixed strategy Nash equilibrium, however the policies of the agents do
not [12]. Smooth FP is a variant of FP that can play mixed strategies and thus
can converge to mixed Nash strategy equilibriums [6].

3.2 WoLF PHC

Bowling proposed a new criterion for learning in multiagent settings in 2001
[2]. The new criterion stated that the learner should have the properties of
convergence in self play and rationality. Convergence in self play means that
the learners should converge to a stationary policy against each other in self-play
while rationality means that the learners should converge to the best response
when playing against stationary opponents. Both the criterion taken together
suggest that the learners should converge to a Nash equilibrium in self play. He
first introduced a simple Q-learning algorithm that can play mixed strategies [2]
and uses hill climbing on the space of mixed policies to generate new mixed
policies. The algorithm satisfied the properties of rationality against stationary
opponents but failed to converge in self play. He then proposed the WoLF PHC
(Win or Lost Fast Policy Hill Climber) algorithm that utilized variable learning
rate to ensure convergence in self play. The rationale behind the algorithm is to
learn fast when loosing (using a higher learning rate) and play cautiously while
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winning so that the opponents can adjust and catch up (using a smaller learning
rate). An important property of the algorithm is that each agent just has to
know its own payoff and need not need to observe opponent’s actions. Bowling
further showed empirically that the algorithm converges to Nash equilibrium
policy profile in two-action two-player repeated games.

3.3 Incremental Gradient Ascent Learning (IGA)

Singh and colleagues introduced a special class of learners called Incremental
gradient ascent learners [13] which converge to Nash equilibrium in self play
for a restricted class of two-action two-player games and for the rest converge
to a an average payoff that can be sustained by some Nash equilibrium of the
repeated game. A two-player two-action general sum game can be defined by
the following matrix,

G =

(

r11, c11 r12, c12

r21, c21 r22, c22

)

where each entry is the corresponding payoff for the row and column player
respectively. Let (α, β) be the mixed strategy played by the players, then the ex-
pected payoffs Vr(α, β) and Vc(α, β) for the row and column players respectively
are,

Vr(α, β) = r11α, β + r22(1− α)(1− β) + r12α(1− β) + r21(1− α)β

Vc(α, β) = c11α, β + c22(1− α)(1− β) + c12α(1− β) + c21(1− α)β

Now taking the partial derivatives of the expected payoffs with the mixed
strategy gives rise to the following set of differential equations,

∂Vr(α, β)

∂α
= βu− (r22 − r12) (2)

∂Vc(α, β)

∂β
= αu′ − (c22 − c12) (3)

where u = (r11− r22)− (r12 + r21) and u′ = (c11− c22)− (c12 + c21). Clearly

from equations 3 and 4, it is clear that the α∗ = (c22−c21)
u′

and β∗ = (r22−r21)
u

, is
a Nash pair provided they satisfy legal probability distributions. The concept is
to use constrained dynamics and project the values of α and β back inside the
unit square to maintain legal probability distributions. The update rule used
by IGA is given by,

αk+1 = αk + η ×
∂Vr(αk, βk)

∂αk

(4)

βk+1 = βk + η ×
∂Vc(αk, βk)

∂βk

(5)

(6)
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where (α0, β0) is the arbitrary starting strategy pair and η is a very small
learning rate. IGA assumes a full information game and one of the strict as-
sumptions is that each agent at each iteration gets to observe the mixed strategy
that its opponent is playing. Singh and colleagues used gradient dynamics in
affine dynamical systems [7] to establish the convergence properties of IGA.
Bowling and Veloso further extended the convergence properties of IGA using
the WoLF principle [1]. They showed that using variable learning rate (which
is the heart of the WoLF principle) does in fact guarantee convergence to a
unique Nash equilibrium strategy profile in all two by two general sum games.
The proof follows the convergence proof presented by Singh and colleagues but
differs in one special case [1].

4 Learning in games with more than two players
and against unknown opponents

Most of the work on multiagent learning has been based on convergence guaran-
tees in self play and stationary opponents. In the previous section, we previewed
a couple of algorithms that attempt to converge to a Nash equilibrium solution
is case of self play. But their guarantees applied to a very restricted class of
two-player two-action general sum games. Conitzer and Sandholm proposed
Awesome in 2003 [4] that provided guarantees in self play for more than two
players but their work assumed that the players either played the same algorithm
or were stationary. But in reality such assumptions of self-play and stationarity
are hard to implement in practice as there are no guarantees about the learning
strategies of the opponents. There is a need to come up with learning algorithms
that guarantee reasonable performance against any number of arbitrary oppo-
nents. Fudenberg and Levine [5] were the first to propose a couple of criterion
that should be satisfied by a learning algorithm when playing against unknown
opponents.
Safety: The learning rule must guarantee at least the minimax payoff of the
game.
Consistency: The learning rule must guarantee that it does at least as well as
the best response (in the stage game) to the empirical distribution of play when
playing against opponents whose play is governed by independent draws from
any fixed probability distribution.

The conditions coupled together is termed as universal consistency. The
condition of consistency is often referred as no-regret where the agent does at
least as better as the pure strategy best response against the empirical distri-
bution of the opponent’s actions. A limitation of this approach is that it makes
sense to consider such a criterion in large population games where an agent’s
actions has no effect on opponent’s actions. Vu, Powers and Shoham [14] pro-
posed a new set of criteria for smaller games with fewer opponents,
Targeted Optimality: Against any member of the target set of opponents,
the algorithm achieves with ε of the expected value of the best response to the

5



actual opponent
Auto Compatibility: During self-play, the algorithm achieves within ε of the
payoff of a Nash equilibrium that is not Pareto dominated by any other Nash
equilibrium
Safety: Against any opponent, the algorithm always receives at least within ε

of the security value for the game
In addition, these requirements were required to hold with probability of at

least 1 - δ after an initial polynomial period of time. They further extended the
criterion against multiple opponents.
Targeted Group Optimality: When each of the agents in the game is either
a self-agent or in the target class, the payoffs of all the self-agents should be at
least Vg− ε and within ε of an PO outcome, given the actual strategies of agents
in the target class.
Safety: Against any set of opponents, the agent must achieve at least Vg − ε

where Vg is the maximin payoff of the agent. Then they proposed an algo-
rithm CORRSTRATEGY(S) that achieves the convergence guarantees against
stationary opponents. They further proposed another algorithm CORRSTRAT-
EGY(A) that attempts to achieve the targeted group optimality criterion for
adaptive opponents. Note the game is assumed to be of complete information to
all agents and each agent can monitor the actions taken by other agents in the
system. Shoham and Powers also proposed an algorithm that tries to achieve
targeted optimality against adaptive opponents of fixed memory [11] in two
player games.

5 Conclusion

In this paper we tried to review the different multiagent learning algorithms
that have been proposed over the years. The review is by no means exhaustive
but lists essential mile stones in the literature.
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