Good Afternoon, Colleagues

Are there any questions?
Good Afternoon, Colleagues

Are there any questions?

- Mixed Nash equilibria?
- What can’t game theory simulate?
- What if one player isn’t rational?
- Doran’s research
Logistics

- Project progress reports due next week
Logistics

- Project progress reports due next week
- Thoughts on faculty candidate?
Class Discussion

Matt Wilson on a multiagent game
Bach/Stravinsky

- My wife and I agree to meet at a concert
Bach/Stravinsky

- My wife and I agree to meet at a concert
- Unfortunately, there are 2: Bach and Stravinsky
My wife and I agree to meet at a concert.

Unfortunately, there are 2: Bach and Stravinsky.

No time to get in touch with each other.
Bach/Stravinsky

- My wife and I agree to meet at a concert
- Unfortunately, there are 2: Bach and Stravinsky
- No time to get in touch with each other
- I prefer Stravinsky, she prefers Bach
Bach/Stravinsky

- My wife and I agree to meet at a concert
- Unfortunately, there are 2: Bach and Stravinsky
- No time to get in touch with each other
- I prefer Stravinsky, she prefers Bach
- But most of all, we want to be together
Bach/Stravinsky

- My wife and I agree to meet at a concert
- Unfortunately, there are 2: Bach and Stravinsky
- No time to get in touch with each other
- I prefer Stravinsky, she prefers Bach
- But most of all, we want to be together
- Propose a payoff matrix
<table>
<thead>
<tr>
<th></th>
<th>Wife</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>S</td>
<td>B</td>
</tr>
<tr>
<td>S</td>
<td>2,1</td>
<td>0,0</td>
</tr>
<tr>
<td>Me</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>0,0</td>
<td>1,2</td>
</tr>
</tbody>
</table>
Correlated Equilibria

Sometimes mixing isn’t enough: Bach/Stravinsky

<table>
<thead>
<tr>
<th></th>
<th>Wife</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>S</td>
<td>B</td>
</tr>
<tr>
<td>S</td>
<td>2,1</td>
<td>0,0</td>
</tr>
<tr>
<td>B</td>
<td>0,0</td>
<td>1,2</td>
</tr>
</tbody>
</table>

Peter Stone
Correlated Equilibria

Sometimes mixing isn’t enough: Bach/Stravinsky

<table>
<thead>
<tr>
<th></th>
<th>Wife</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>S</td>
</tr>
<tr>
<td>S</td>
<td>2,1</td>
<td>0,0</td>
</tr>
<tr>
<td>B</td>
<td>0,0</td>
<td>1,2</td>
</tr>
</tbody>
</table>

Want only S,S or B,B - 50% each
Focal points

- We will both be in Paris for some time in June.
- We both know that we will both be there on the 15th.
Focal points

- We will both be in Paris for some time in June.
- We both know that we will both be there on the 15th.
- Something happens so that we must meet on that day.
- We have no way of getting in touch.
Focal points

• We will both be in Paris for some time in June.
• We both know that we will both be there on the 15th.
• Something happens so that we must meet on that day.
• We have no way of getting in touch.
• When and where?
Focal points

• We will both be in Paris for some time in June.
• We both know that we will both be there on the 15th.
• Something happens so that we must meet on that day.
• We have no way of getting in touch.
• When and where?
• What are the Nash equilibria?
Incomplete Information Games

- We each get one of 3 cards: 1, 2, 3
- If we both fold, we both lose nothing
- If one raises and one folds, the raiser gets 1
- If both raise, the one with the higher card gets 5
- Zero sum
Incomplete Information Games

- We each get one of 3 cards: 1, 2, 3
- If we both fold, we both lose nothing
- If one raises and one folds, the raiser gets 1
- If both raise, the one with the higher card gets 5
- Zero sum

<table>
<thead>
<tr>
<th>Card ?</th>
<th>R</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>5, -5</td>
<td>1, -1</td>
</tr>
<tr>
<td>F</td>
<td>-1, 1</td>
<td>0, 0</td>
</tr>
</tbody>
</table>
Incomplete Information Games

Card 3

<table>
<thead>
<tr>
<th></th>
<th>R</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>5,-5</td>
<td>1,-1</td>
</tr>
<tr>
<td>F</td>
<td>-1,1</td>
<td>0,0</td>
</tr>
</tbody>
</table>
Incomplete Information Games

<table>
<thead>
<tr>
<th>Card ?</th>
<th>R</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Card 3</th>
<th>R</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>R 5,-5</td>
<td>1,-1</td>
<td></td>
</tr>
<tr>
<td>F -1,1</td>
<td>0,0</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Card ?</th>
<th>R</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Card 1</th>
<th>R</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>R -5,5</td>
<td>1,-1</td>
<td></td>
</tr>
<tr>
<td>F -1,1</td>
<td>0,0</td>
<td></td>
</tr>
</tbody>
</table>
Bayes-Nash Equilibrium

- 3 ⇒ raise
Bayes-Nash Equilibrium

- 3 ⇒ raise
- 1 ⇒ fold (no matter what the other one does with 2)
Bayes-Nash Equilibrium

- 3 ⇒ raise
- 1 ⇒ fold (no matter what the other one does with 2)
- 2 ⇒ ?
Bayes-Nash Equilibrium

- 3 ⇒ raise
- 1 ⇒ fold (no matter what the other one does with 2)
- 2 ⇒ ?
 - Raise: \((.5)(-5) + (.5)(1) = -2\)
 - Fold: \((.5)(-1) + (.5)(0) = -.5\)
Bayes-Nash Equilibrium

- $3 \Rightarrow$ raise
- $1 \Rightarrow$ fold (no matter what the other one does with 2)
- $2 \Rightarrow$?
 - Raise: $(.5)(-5) + (.5)(1) = -2$
 - Fold: $(.5)(-1) + (.5)(0) = -.5$
 - Always fold!
Bayes-Nash Equilibrium

• 3 ⇒ raise

• 1 ⇒ fold (no matter what the other one does with 2)

• 2 ⇒ ?
 – Raise: (.5)(-5) + (.5)(1) = -2
 – Fold: (.5)(-1) + (.5)(0) = -.5
 – Always fold!
 – Bayes-Nash: both players Raise if 3, otherwise Fold
Bayes-Nash Equilibrium

- 3 ⇒ raise
- 1 ⇒ fold (no matter what the other one does with 2)
- 2 ⇒ ?
 - Raise: (.5)(-5) + (.5)(1) = -2
 - Fold: (.5)(-1) + (.5)(0) = -.5
 - Always fold!
 - Bayes-Nash: both players Raise if 3, otherwise Fold

With more numbers and/or different payoffs, bluffing can be a part of the Nash Equilibrium
Stackelburg Game

<table>
<thead>
<tr>
<th>Player 1</th>
<th>Action 1</th>
<th>Action 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Action 1</td>
<td>1,0</td>
<td>3,2</td>
</tr>
<tr>
<td>Action 2</td>
<td>2,1</td>
<td>4,0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Player 2</th>
<th>Action 1</th>
<th>Action 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Action 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Action 2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Stackelburg Game

<table>
<thead>
<tr>
<th>Player 1</th>
<th>Action 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Action 1</td>
<td>2,1</td>
</tr>
<tr>
<td>Action 2</td>
<td>4,0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Player 2</th>
<th>Action 1</th>
<th>Action 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Action 1</td>
<td>1,0</td>
<td>3,2</td>
</tr>
</tbody>
</table>

- Nash equilibrium?
Stackelburg Game

<table>
<thead>
<tr>
<th>Player 2</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Action 1</td>
</tr>
<tr>
<td>Action 1</td>
<td>1,0</td>
</tr>
<tr>
<td>Action 2</td>
<td>2,1</td>
</tr>
</tbody>
</table>

- Nash equilibrium?
- Action 2 is dominant for Player 1. End of story?
Stackelburg Game

<table>
<thead>
<tr>
<th>Player 2</th>
<th>Action 1</th>
<th>Action 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Action 1</td>
<td>1,0</td>
<td>3,2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Player 1</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Action 2</td>
<td>2,1</td>
<td>4,0</td>
</tr>
</tbody>
</table>

- Nash equilibrium?
- Action 2 is dominant for Player 1. End of story?
- What would you do as player 1?
Stackelburg Game

<table>
<thead>
<tr>
<th>Player 1</th>
<th>Action 1</th>
<th>2,1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Player 2</td>
<td>Action 1</td>
<td>1,0</td>
</tr>
<tr>
<td></td>
<td>Action 2</td>
<td>3,2</td>
</tr>
</tbody>
</table>

- Nash equilibrium?
- Action 2 is dominant for Player 1. End of story?
- What would you do as player 1?
- What would you do as player 2? (repeated game)
Stackelburg Game

<table>
<thead>
<tr>
<th></th>
<th>Player 1</th>
<th></th>
<th>Player 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Action 1</td>
<td>1,0</td>
<td>3,2</td>
<td></td>
</tr>
<tr>
<td>Action 2</td>
<td>2,1</td>
<td>4,0</td>
<td></td>
</tr>
</tbody>
</table>

- Nash equilibrium?
- Action 2 is dominant for Player 1. End of story?
- What would you do as player 1?
- What would you do as player 2? (repeated game)
- **Threats** can stabilize a non-equilibrium strategy
- Change the **best response** of the other agent
Stackelburg Game

<table>
<thead>
<tr>
<th></th>
<th>Player 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Action 1</td>
<td>Action 2</td>
</tr>
<tr>
<td>Action 1</td>
<td>1,0</td>
</tr>
<tr>
<td>Action 2</td>
<td>2,1</td>
</tr>
</tbody>
</table>

- Nash equilibrium?
- Action 2 is dominant for Player 1. End of story?
- What would you do as player 1?
- What would you do as player 2? (repeated game)
- **Threats** can stabilize a non-equilibrium strategy
- Change the **best response** of the other agent

 Threats slides
Discussion

• How useful is the concept of Nash equilibrium?
Discussion

• How useful is the concept of Nash equilibrium?

• What if one player isn’t rational?
Discussion

- How useful is the concept of Nash equilibrium?
- What if one player isn’t rational?
- What can’t game theory simulate?
Discussion

- How useful is the concept of Nash equilibrium?
- What if one player isn’t rational?
- What can’t game theory simulate?
- Shoham:
 - 0-sum = single agent problem
 - common payoff = search for pareto optimum
Discussion

- How useful is the concept of Nash equilibrium?
- What if one player isn’t rational?
- What can’t game theory simulate?

Shoham:
- 0-sum = single agent problem
- common payoff = search for pareto optimum
- General sum is the interesting case:
Discussion

• How useful is the concept of Nash equilibrium?

• What if one player isn’t rational?

• What can’t game theory simulate?

• Shoham:
 – 0-sum = single agent problem
 – common payoff = search for pareto optimum
 – General sum is the interesting case:
 – Learning in an environment with other, unknown, independent agents who may also be learning
Discussion

- How useful is the concept of Nash equilibrium?
- What if one player isn’t rational?
- What can’t game theory simulate?
- Shoham:
 - 0-sum = single agent problem
 - common payoff = search for pareto optimum
 - General sum is the interesting case:
 - Learning in an environment with other, unknown, independent agents who may also be learning
– Need to do well against some set of agents, never too poorly, and well against yourself.
Stochastic Games

- Tutorial slides