Good Afternoon, Colleagues

Are there any questions?
Good Afternoon, Colleagues

Are there any questions?

- SDR?
- Open-loop vs. Closed-loop
- Why only 8 agents in TAC?
- Any other TAC? Branch offs?
- Stock trading?
Logistics

- Progress reports coming back
 - Hand them in with your final reports
Logistics

- Progress reports coming back
 - Hand them in with your final reports

- Final projects due in 2 1/2 weeks!
Your Progress Reports

- Overall not bad, but not as good as proposals
Your Progress Reports

- Overall not bad, but not as good as proposals
- Best ones motivate the problem before giving solutions
Your Progress Reports

• Overall not bad, but not as good as proposals

• Best ones motivate the problem before giving solutions

• Say not only what’s done, but what’s yet to do
Your Progress Reports

- Overall not bad, but not as good as proposals
- Best ones motivate the problem before giving solutions
- Say not only what’s done, but what’s yet to do
- Clear enough for outsider to understand
Your Progress Reports

• Overall not bad, but not as good as proposals

• Best ones motivate the problem before giving solutions

• Say not only what’s done, but what’s yet to do

• Clear enough for outsider to understand
 – Exchange papers for proofreading
 – Use undergraduate writing center
Your Progress Reports

• Overall not bad, but not as good as proposals

• Best ones motivate the problem before giving solutions

• Say not only what’s done, but what’s yet to do

• Clear enough for outsider to understand
 – Exchange papers for proofreading
 – Use undergraduate writing center

• Enough detail so that Doran or I could reimplement
Style

• More about your approach, less about the process
Style

• More about your approach, less about the process
 – Not “What I did on summer vacation”
Style

- More about your approach, less about the process
 - Not “What I did on summer vacation”
 - Not just “we decided.”
Style

- More about your approach, less about the process
 - Not “What I did on summer vacation”
 - Not just “we decided.”

- Slides on resources page
Results

• Big successes
 – Lots of bidders
 – Lots of revenue
Results

- Big successes
 - Lots of bidders
 - Lots of revenue

- Also some problems
 - Strategic Demand Reduction
Results

• Big successes
 – Lots of bidders
 – Lots of revenue

• Also some problems
 – Strategic Demand Reduction

• Incremental design changes
 – New problems always arise
 – Bidders indeed find ways to circumvent mechanisms
Results

- Big successes
 - Lots of bidders
 - Lots of revenue

- Also some problems
 - Strategic Demand Reduction

- Incremental design changes
 - New problems always arise
 - Bidders indeed find ways to circumvent mechanisms

- Lessons to be learned via agent-based experiments
FCC Spectrum Auction #35

• 422 licences in 195 markets (cities)
 – 80 bidders spent $8 billion
 – ran Dec 12 - Jan 26 2001
 – licence is a 10 or 15 mhz spectrum chunk

• Run in rounds
 – bid on each licence you want each round
 – simultaneous; break ties by arrival time
 – current winner and all bids are known

• Allowable bids: 1 to 9 bid increments
 – 1 bid incr is 10% – 20% of current price

• Other complex rules
Model

- Agent goals
 - desire 0, 1, or 2 licences per market
 - desired markets have unique values
 - subject to budget constraint

Assumption: no inter-market value dependencies

- Utility is profit: $\Sigma_l (value - cost)$

- modeled 5 most important bidders
 - others served mainly to raise prices
 - modeled as several small bidders
 - lower valuations (75% → pessimistic)
Bidding Strategies

- Considering self only
 - Knapsack
 - best self-only approach

- Strategic bidding (consider others)
 - threats
 - budget stretching
 - Strategic Demand Reduction (SDR)

Explicit communication not allowed
Randomized SDR

- Figure out allocations dynamically
 - round 1: bid for everything you want
 - first big bidder winning bid owns licence
 - satisfaction = owned value / desired value

- Random ⇒ uneven allocation
 - get small share ⇒ incentive to cheat
 - fair: own satisfaction close to average
 - if unlucky, take licences until fair

- Small bidders take licences from owners
 - remember licence’s owner
 - allocate while small bidders active
RSDR vs. Knapsack

<table>
<thead>
<tr>
<th>Method</th>
<th>Agent</th>
<th>Profit ($M)</th>
<th>Ratio</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Knapsack</td>
<td>0</td>
<td>980 (±170)</td>
<td>1.00</td>
<td>.82</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>650 (±85)</td>
<td>1.00</td>
<td>.82</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>830 (±91)</td>
<td>1.00</td>
<td>.84</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>170 (±20)</td>
<td>1.00</td>
<td>.84</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>550 (±96)</td>
<td>1.00</td>
<td>.86</td>
</tr>
<tr>
<td>RSDR</td>
<td>0</td>
<td>1240 (±210)</td>
<td>1.26</td>
<td>.76</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>820 (±83)</td>
<td>1.25</td>
<td>.77</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>1300 (±290)</td>
<td>1.58</td>
<td>.74</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>300 (±44)</td>
<td>1.78</td>
<td>.79</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>930 (±240)</td>
<td>1.68</td>
<td>.76</td>
</tr>
</tbody>
</table>

44% more profit; avg. ratio 1.51
Robustness

• What if someone cheats?
 - cheat: defect back to knapsack
 - others stay out of its way ⇒ big win

• Solution: Punishing RSDR (PRSDR)
 - cheater takes your licence ⇒ take it back
 - take it back first while still have money
 - aggressively punitive: skips optimizers

Simplification: pointing out cheaters by hand
Robustness

<table>
<thead>
<tr>
<th>Method</th>
<th>Ratio</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Knapsack</td>
<td>1.00</td>
<td>.84</td>
</tr>
<tr>
<td>RSDR</td>
<td>1.51</td>
<td>.76</td>
</tr>
<tr>
<td>RSDR Cheater</td>
<td>1.63</td>
<td>.76</td>
</tr>
<tr>
<td>RSDR Victim</td>
<td>1.22</td>
<td>.79</td>
</tr>
<tr>
<td>PRSDR Cheater</td>
<td>1.02</td>
<td>.83</td>
</tr>
<tr>
<td>PRSDR Enforcer</td>
<td>1.17</td>
<td>.81</td>
</tr>
</tbody>
</table>
Extensions

- **Change small bidder valuations**
 - test robustness
 - RSDR is optimal for preserving profit

- **Multiple cheaters**
 - current punishment too aggressive
 - collapse back to knapsack instead
Extensions

<table>
<thead>
<tr>
<th>Method</th>
<th>Ratio</th>
<th>Local Ratio</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multiple Cheater</td>
<td>1.03</td>
<td>1.03</td>
<td>.84</td>
</tr>
<tr>
<td>Multiple Enforcer</td>
<td>1.01</td>
<td>1.01</td>
<td>.83</td>
</tr>
<tr>
<td>50% Knapsack</td>
<td>1.70</td>
<td>1.00</td>
<td>.74</td>
</tr>
<tr>
<td>50% RSDR</td>
<td>3.42</td>
<td>2.02</td>
<td>.51</td>
</tr>
<tr>
<td>75% Knapsack</td>
<td>1.00</td>
<td>1.00</td>
<td>.84</td>
</tr>
<tr>
<td>75% RSDR</td>
<td>1.51</td>
<td>1.51</td>
<td>.76</td>
</tr>
<tr>
<td>85% Knapsack</td>
<td>0.68</td>
<td>1.00</td>
<td>.89</td>
</tr>
<tr>
<td>85% RSDR</td>
<td>0.81</td>
<td>1.25</td>
<td>.87</td>
</tr>
</tbody>
</table>
Future Work

- Robustness enhancements
 - better punishment method

- More complex value functions
 - inter-market dependencies

- Automatic cheater detection
 - partial cheating vs. detection arms race
 - smack back into compliance

- Generalization to other auctions
 - more robust to tie-breaking procedure variations
Summary

• Communication-free coordination
• Enables much higher profits
• Works even uncertain knowledge
• Real-world functionality relies on simple assumptions:
Summary

• Communication-free coordination

• Enables much higher profits

• Works even uncertain knowledge

• Real-world functionality relies on simple assumptions:
 – bidders want more profit
 – bidders familiar with PRSDR and its benefits
 – bidders willing to try it risk-free
Trading Agent Competition

- Put forth as a **benchmark problem** for e-marketplaces (Wellman, Wurman, et al., 2000)

- Autonomous agents act as **travel agents**
Trading Agent Competition

- Put forth as a **benchmark problem** for e-marketplaces (Wellman, Wurman, et al., 2000)

- Autonomous agents act as **travel agents**
 - **Game**: 8 agents, 12 min.
Trading Agent Competition

- Put forth as a **benchmark problem** for e-marketplaces (Wellman, Wurman, et al., 2000)

- Autonomous agents act as **travel agents**
 - **Game**: 8 agents, 12 min. (why 8?)
 - **Agent**: simulated travel agent with 8 clients
 - **Client**: TACtown ↔ Tampa within 5-day period
Trading Agent Competition

- Put forth as a **benchmark problem** for e-marketplaces (Wellman, Wurman, et al., 2000)

- Autonomous agents act as **travel agents**
 - **Game**: 8 *agents*, 12 min. (why 8?)
 - **Agent**: simulated travel agent with 8 *clients*
 - **Client**: TACtown ↔ Tampa within 5-day period

- **Auctions** for flights, hotels, entertainment tickets
 - **Server** maintains markets, sends prices to agents
 - Agent sends bids to server **over network**
Simultaneous Auctions

Flights: Inflight days 1-4, Outflight days 2-5 (8)

- Unlimited supply; prices tend to increase; immediate clear; no resale
28 Simultaneous Auctions

Flights: Inflight days 1-4, Outflight days 2-5 (8)

- Unlimited supply; prices tend to increase; immediate clear; no resale

Hotels: Tampa Towers/Shoreline Shanties days 1-4 (8)

- 16 rooms per auction; 16th-price ascending auction; quote is ask price; no resale
- Random auction closes minutes 4 – 11
28 Simultaneous Auctions

Flights: Inflight days 1-4, Outflight days 2-5 (8)
- Unlimited supply; prices tend to increase; immediate clear; no resale

Hotels: Tampa Towers/Shoreline Shanties days 1-4 (8)
- 16 rooms per auction; 16th-price ascending auction; quote is ask price; no resale
- Random auction closes minutes 4 – 11

Entertainment: Wrestling/Museum/Park days 1-4 (12)
- Continuous double auction; initial endowments; quote is bid-ask spread; resale allowed
Client Preferences and Utility

Preferences: randomly generated per client

- Ideal arrival, departure days
- Good Hotel Value
- Entertainment Values
Client Preferences and Utility

Preferences: randomly generated per client

- Ideal arrival, departure days
- Good Hotel Value
- Entertainment Values

Utility: 1000 (if valid) − travel penalty + hotel bonus
+ entertainment bonus
Client Preferences and Utility

Preferences: randomly generated per client

- Ideal arrival, departure days
- Good Hotel Value
- Entertainment Values

Utility: 1000 (if valid) − travel penalty + hotel bonus + entertainment bonus

Score: Sum of client utilities − expenditures
Allocation

\[G \equiv \text{complete allocation of goods to clients} \]

\[v(G) \equiv \text{utility of } G \text{ – cost of needed goods} \]

\[G^* \equiv \text{argmax } v(G') \]
Allocation

\[G \equiv \text{complete allocation of goods to clients} \]
\[v(G) \equiv \text{utility of } G - \text{cost of needed goods} \]
\[G^* \equiv \text{argmax } v(G) \]

Given holdings and prices, find \(G^* \)
Allocation

\[G \equiv \text{complete allocation of goods to clients} \]
\[v(G) \equiv \text{utility of } G - \text{cost of needed goods} \]
\[G^* \equiv \arg\max v(G) \]

Given holdings and prices, find \(G^* \)

- General allocation NP-complete
 - Tractable in TAC: mixed-integer LP (ATTac-2000)
 - Estimate \(v(G^*) \) quickly with LP relaxation
Allocation

\[G \equiv \text{complete allocation of goods to clients} \]

\[v(G) \equiv \text{utility of } G - \text{cost of needed goods} \]

\[G^* \equiv \text{argmax } v(G') \]

Given holdings and prices, find \(G^* \)

- General allocation NP-complete
 - Tractable in TAC: mixed-integer LP (ATTac-2000)
 - Estimate \(v(G^*) \) quickly with LP relaxation

Prices known \(\Rightarrow G^* \) known \(\Rightarrow \) optimal bids known
High-Level Strategy

• Learn model of expected hotel price
High-Level Strategy

• Learn model of expected hotel price distributions
High-Level Strategy

- Learn model of expected hotel price distributions

- For each auction:
 - Repeatedly sample price vector from distributions
High-Level Strategy

- Learn model of expected hotel price distributions

- For each auction:
 - Repeatedly sample price vector from distributions
 - Bid avg marginal expected utility: $v(G_w^*) - v(G_l^*)$
High-Level Strategy

• Learn model of expected hotel price distributions

• For each auction:
 – Repeatedly sample price vector from distributions
 – Bid avg marginal expected utility: $v(G^*_w) - v(G^*_l)$

• Bid for all goods — not just those in G^*
High-Level Strategy

• Learn model of expected hotel price distributions

• For each auction:
 – Repeatedly sample price vector from distributions
 – Bid avg marginal expected utility: $v(G_w^*) - v(G_i^*)$

• Bid for all goods — not just those in G^*

Goal: analytically calculate optimal bids
Hotel Price Prediction

• **Features:**
 - Current hotel and flight prices
 - Current time in game
 - Hotel closing times
 - Agents in the game (when known)
 - Variations of the above
Hotel Price Prediction

● Features:
 – Current hotel and flight prices
 – Current time in game
 – Hotel closing times
 – Agents in the game (when known)
 – Variations of the above

● Data:
 – Hundreds of seeding round games
Hotel Price Prediction

- **Features:**
 - Current hotel and flight prices
 - Current time in game
 - Hotel closing times
 - Agents in the game (when known)
 - Variations of the above

- **Data:**
 - Hundreds of seeding round games
 - Assumption: similar economy
Hotel Price Prediction

- **Features:**
 - Current hotel and flight prices
 - Current time in game
 - Hotel closing times
 - Agents in the game (when known)
 - Variations of the above

- **Data:**
 - Hundreds of seeding round games
 - Assumption: similar economy
 - Features \mapsto actual prices
The Learning Algorithm

- $X \equiv \text{feature vector } \in \mathbb{R}^n$
- $Y \equiv \text{closing price – current price } \in \mathbb{R}$
The Learning Algorithm

- \(X \equiv \text{feature vector} \in \mathbb{R}^n \)
- \(Y \equiv \text{closing price} - \text{current price} \in \mathbb{R} \)
- Break \(Y \) into \(k \approx 50 \) cut points \(b_1 \leq \cdots \leq b_k \)
The Learning Algorithm

- \(X \equiv \text{feature vector} \in \mathbb{R}^n \)
- \(Y \equiv \text{closing price} - \text{current price} \in \mathbb{R} \)
- Break \(Y \) into \(k \approx 50 \) cut points \(b_1 \leq \cdots \leq b_k \)
- For each \(b_i \), estimate probability \(Y \geq b_i \), given \(X \)
The Learning Algorithm

- \(X \equiv \text{feature vector} \in \mathbb{R}^n \)
- \(Y \equiv \text{closing price} - \text{current price} \in \mathbb{R} \)
- Break \(Y \) into \(k \approx 50 \) cut points \(b_1 \leq \cdots \leq b_k \)
- For each \(b_i \), estimate probability \(Y \geq b_i \), given \(X \)
 - Say \(X \) belongs to class \(C_i \) if \(Y \geq b_i \)
The Learning Algorithm

• \(X \equiv \text{feature vector} \in \mathbb{R}^n \)

• \(Y \equiv \text{closing price} – \text{current price} \in \mathbb{R} \)

• Break \(Y \) into \(k \approx 50 \) cut points \(b_1 \leq \cdots \leq b_k \)

• For each \(b_i \), estimate probability \(Y \geq b_i \), given \(X \)
 – Say \(X \) belongs to class \(C_i \) if \(Y \geq b_i \)
 – \(k \)-class problem: each example in many classes

Peter Stone
The Learning Algorithm

- \(X \equiv \) feature vector \(\in \mathbb{R}^n \)

- \(Y \equiv \) closing price – current price \(\in \mathbb{R} \)

- Break \(Y \) into \(k \approx 50 \) cut points \(b_1 \leq \cdots \leq b_k \)

- For each \(b_i \), estimate probability \(Y \geq b_i \), given \(X \)
 - Say \(X \) belongs to class \(C_i \) if \(Y \geq b_i \)
 - \(k \)-class problem: each example in many classes
 - Use BoostTexter (boosting (Schapire, 1990))
The Learning Algorithm

• $X \equiv$ feature vector $\in \mathbb{R}^n$

• $Y \equiv$ closing price – current price $\in \mathbb{R}$

• Break Y into $k \approx 50$ cut points $b_1 \leq \cdots \leq b_k$

• For each b_i, estimate probability $Y \geq b_i$, given X
 – Say X belongs to class C_i if $Y \geq b_i$
 – k-class problem: each example in many classes
 – Use BoostTexter (boosting (Schapire, 1990))

• Can convert to estimated distribution of $Y|X$
The Learning Algorithm

• $X \equiv \text{feature vector} \in \mathbb{R}^n$

• $Y \equiv \text{closing price} - \text{current price} \in \mathbb{R}$

• Break Y into $k \approx 50$ cut points $b_1 \leq \cdots \leq b_k$

• For each b_i, estimate probability $Y \geq b_i$, given X

 – Say X belongs to class C_i if $Y \geq b_i$

 – k-class problem: each example in many classes

 – Use BoostTexter (boosting (Schapire, 1990))

• Can convert to estimated distribution of $Y|X$

New algorithm for conditional density estimation
Hotel Expected Values

• Repeat until time bound, for each hotel:
 1. Assume this hotel closes next
Hotel Expected Values

• Repeat until time bound, for each hotel:

 1. Assume this hotel closes next
 2. Sample prices from predicted price distributions
Hotel Expected Values

- Repeat until time bound, for each hotel:
 1. Assume this hotel closes next
 2. Sample prices from predicted price distributions
 3. Given these prices compute $V_0, V_1, \ldots V_8$
 - $V_i = v(G^*)$ if own exactly i of the hotel
 - $V_0 \leq V_1 \leq \ldots \leq V_8$
Hotel Expected Values

- Repeat until time bound, for each hotel:
 1. Assume this hotel closes next
 2. Sample prices from predicted price distributions
 3. Given these prices compute V_0, V_1, \ldots, V_8
 - $V_i = v(G^*)$ if own exactly i of the hotel
 - $V_0 \leq V_1 \leq \ldots \leq V_8$

- Value of ith copy is $\text{avg}(V_i - V_{i-1})$
Other Uses of Sampling

Flights: Cost/benefit analysis for postponing commitment

Peter Stone
Other Uses of Sampling

Flights: Cost/benefit analysis for postponing commitment

Cost: Price expected to rise over next n minutes

Benefit: More price info becomes known
 - Compute expected marginal value of buying some different flight
Other Uses of Sampling

Flights: Cost/benefit analysis for postponing commitment

Cost: Price expected to rise over next n minutes
Benefit: More price info becomes known
 • Compute expected marginal value of buying some different flight

Entertainment: Bid more (ask less) than expected value of having one more (fewer) ticket
Finals

<table>
<thead>
<tr>
<th>Team</th>
<th>Avg.</th>
<th>Adj.</th>
<th>Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATTac</td>
<td>3622</td>
<td>4154</td>
<td>AT&T</td>
</tr>
<tr>
<td>livingagents</td>
<td>3670</td>
<td>4094</td>
<td>Living Systems (Germ.)</td>
</tr>
<tr>
<td>whitebear</td>
<td>3513</td>
<td>3931</td>
<td>Cornell</td>
</tr>
<tr>
<td>Urlaub01</td>
<td>3421</td>
<td>3909</td>
<td>Penn State</td>
</tr>
<tr>
<td>Retsina</td>
<td>3352</td>
<td>3812</td>
<td>CMU</td>
</tr>
<tr>
<td>CaiserSose</td>
<td>3074</td>
<td>3766</td>
<td>Essex (UK)</td>
</tr>
<tr>
<td>Southampton</td>
<td>3253*</td>
<td>3679</td>
<td>Southampton (UK)</td>
</tr>
<tr>
<td>TacsMan</td>
<td>2859</td>
<td>3338</td>
<td>Stanford</td>
</tr>
</tbody>
</table>

- ATTac improves over time
- livingagents is an open-loop strategy
Controlled Experiments

- $ATTac_s$: “full-strength” agent based on boosting
Controlled Experiments

- $ATTac_s$: "full-strength" agent based on boosting
- $SimpleMean_s$: sample from empirical distribution (previously played games)
Controlled Experiments

- ATTac_s: "full-strength" agent based on boosting
- SimpleMean_s: sample from empirical distribution (previously played games)
- ConditionalMean_s: condition on closing time
Controlled Experiments

- \(ATTac_s \): “full-strength” agent based on boosting
- \(SimpleMean_s \): sample from empirical distribution (previously played games)
- \(ConditionalMean_s \): condition on closing time
- \(ATTac_{ns}, ConditionalMean_{ns}, SimpleMean_{ns} \): predict expected value of the distribution
Controlled Experiments

- \(ATTac_s \): “`full-strength’’ agent based on boosting
- \(SimpleMean_s \): sample from empirical distribution (previously played games)
- \(ConditionalMean_s \): condition on closing time
- \(ATTac_{ns}, ConditionalMean_{ns}, SimpleMean_{ns} \): predict expected value of the distribution
- \(CurrentPrice \): predict no change
Controlled Experiments

- **ATTac**_s: “full-strength” agent based on boosting
- **SimpleMean**_s: sample from empirical distribution (previously played games)
- **ConditionalMean**_s: condition on closing time
- **ATTac**_{ns}, **ConditionalMean**_{ns}, **SimpleMean**_{ns}: predict expected value of the distribution
- **CurrentPrice**: predict no change
- **EarlyBidder**: motivated by TAC-01 entry livingagents
Controlled Experiments

- **ATTac$_s$**: “full-strength” agent based on boosting
- **SimpleMean$_s$**: sample from empirical distribution (previously played games)
- **ConditionalMean$_s$**: condition on closing time
- **ATTac$_{ns}$, ConditionalMean$_{ns}$, SimpleMean$_{ns}$**: predict expected value of the distribution
- **CurrentPrice**: predict no change
- **EarlyBidder**: motivated by TAC-01 entry livingagents
 - Immediately bids high for G^* (with SimpleMean$_{ns}$)
 - Goes to sleep
Stability

- 7 *EarlyBidder’s* with 1 *ATTac*

<table>
<thead>
<tr>
<th>Agent</th>
<th>Score</th>
<th>Utility</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATTac</td>
<td>2431 ± 464</td>
<td>8909 ± 264</td>
</tr>
<tr>
<td>EarlyBidder</td>
<td>-4880 ± 337</td>
<td>9870 ± 34</td>
</tr>
</tbody>
</table>
Stability

- 7 EarlyBidder’s with 1 ATTac

<table>
<thead>
<tr>
<th>Agent</th>
<th>Score</th>
<th>Utility</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATTac</td>
<td>2431 ± 464</td>
<td>8909 ± 264</td>
</tr>
<tr>
<td>EarlyBidder</td>
<td>−4880 ± 337</td>
<td>9870 ± 34</td>
</tr>
</tbody>
</table>

- 7 ATTac’s with 1 EarlyBidder

<table>
<thead>
<tr>
<th>Agent</th>
<th>Score</th>
<th>Utility</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATTac</td>
<td>2578 ± 25</td>
<td>9650 ± 21</td>
</tr>
<tr>
<td>EarlyBidder</td>
<td>2869 ± 69</td>
<td>10079 ± 55</td>
</tr>
</tbody>
</table>
Stability

- 7 EarlyBidder’s with 1 ATTac

<table>
<thead>
<tr>
<th>Agent</th>
<th>Score</th>
<th>Utility</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATTac</td>
<td>2431 ± 464</td>
<td>8909 ± 264</td>
</tr>
<tr>
<td>EarlyBidder</td>
<td>-4880 ± 337</td>
<td>9870 ± 34</td>
</tr>
</tbody>
</table>

- 7 ATTac’s with 1 EarlyBidder

<table>
<thead>
<tr>
<th>Agent</th>
<th>Score</th>
<th>Utility</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATTac</td>
<td>2578 ± 25</td>
<td>9650 ± 21</td>
</tr>
<tr>
<td>EarlyBidder</td>
<td>2869 ± 69</td>
<td>10079 ± 55</td>
</tr>
</tbody>
</table>

EarlyBidder gets more utility; ATTac pays less
Results

- **Phase I**: Training from TAC-01 (seeding round, finals)
Results

- **Phase I**: Training from TAC-01 (seeding round, finals)
- **Phase II**: Training from TAC-01, phases I, II
Results

- **Phase I**: Training from TAC-01 (seeding round, finals)
- **Phase II**: Training from TAC-01, phases I, II
- **Phase III**: Training from phases I – III
Results

- **Phase I**: Training from TAC-01 (seeding round, finals)
- **Phase II**: Training from TAC-01, phases I, II
- **Phase III**: Training from phases I – III

<table>
<thead>
<tr>
<th>Agent</th>
<th>Relative Score</th>
<th>Phase I</th>
<th>Phase III</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATTac<sub>ns</sub></td>
<td></td>
<td>105.2 ± 49.5 (2)</td>
<td>166.2 ± 20.8 (1)</td>
</tr>
<tr>
<td>ATTac<sub>s</sub></td>
<td></td>
<td>27.8 ± 42.1 (3)</td>
<td>122.3 ± 19.4 (2)</td>
</tr>
<tr>
<td>EarlyBidder</td>
<td></td>
<td>140.3 ± 38.6 (1)</td>
<td>117.0 ± 18.0 (3)</td>
</tr>
<tr>
<td>SimpleMean<sub>ns</sub></td>
<td></td>
<td>−28.8 ± 45.1 (5)</td>
<td>−11.5 ± 21.7 (4)</td>
</tr>
<tr>
<td>SimpleMean<sub>s</sub></td>
<td></td>
<td>−72.0 ± 47.5 (7)</td>
<td>−44.1 ± 18.2 (5)</td>
</tr>
<tr>
<td>ConditionalMean<sub>ns</sub></td>
<td></td>
<td>8.6 ± 41.2 (4)</td>
<td>−60.1 ± 19.7 (6)</td>
</tr>
<tr>
<td>ConditionalMean<sub>s</sub></td>
<td></td>
<td>−147.5 ± 35.6 (8)</td>
<td>−91.1 ± 17.6 (7)</td>
</tr>
<tr>
<td>CurrentPrice</td>
<td></td>
<td>−33.7 ± 52.4 (6)</td>
<td>−198.8 ± 26.0 (8)</td>
</tr>
</tbody>
</table>
Later TACs

- SCM, CAT
- PLAT
Last-minute bidding (R,O, 2001)

- eBay: first-price, ascending auction
- Amazon: auction extended if bid in last 10 minutes
- eBay: bots exist to incrementally raise your bid to a maximum

- Still people *snipe*. Why?
 - There’s a risk that the bid might not make it
 - However, common-value \(\Rightarrow \) bid conveys info
 - Late-bidding can be seen as implicit collusion
 - Or . . . , lazy, unaware, etc. (Amazon and eBay)

- Finding: more late-bidding on eBay,
 - even more on antiques rather than computers

Small design-difference matters
Late Bidding as Best Response

- Good vs. incremental bidders
 - They start bidding low, plan to respond
 - Doesn’t give them time to respond

- Good vs. other snipers
 - Implicit collusion
 - Both bid low, chance that one bid doesn’t get in

- Good in common-value case
 - Protects information

Overall, the analysis of multiple bids supports the hypothesis that last-minute bidding arises at least in part as a response by sophisticated bidders to unsophisticated incremental bidding.