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Good Afternoon, Colleagues

Are there any questions?
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Logistics

• Executable teams due next Tuesday

• Final reports due on Thursday

• Final tournament: Wednesday, May 7th, 10am,
TAY 3.128
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Machine Learning
Hypothesis space: set of possible functions

Training examples: the data

Learning method: training examples 7→ hypothesis
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Machine Learning
Hypothesis space: set of possible functions

Training examples: the data

Learning method: training examples 7→ hypothesis

Agent Learning
Policy: how to act (generate training examples)

neural network training, decision tree training, clustering,
genetic algorithms, genetic programming, reinforcement
learning. . .

Peter Stone



3 vs. 2 Keepaway (joint with Rich Sutton)
• Play in a small area (20m × 20m)

• Keepers try to keep the ball

• Takers try to get the ball

• Episode:
− Players and ball reset randomly
− Ball starts near a keeper
− Ends when taker gets the ball or ball goes out

• Performance measure: average possession duration

• Use CMUnited-99 skills:

− HoldBall, PassBall(k), GoToBall, GetOpen
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Available Skills (from CMUnited-99)

HoldBall(): Remain stationary while keeping possession of
the ball.

PassBall(k): Kick the ball directly to keeper k.

GoToBall(): Intercept a moving ball or move directly towards
a stationary ball.

GetOpen(): Move to a position that is free from opponents
and open for a pass from the ball’s current position (using
SPAR [Veloso et al., 1999])

BlockPass(k): Get in between the ball and keeper k
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The Keepers’ Policy Space
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The Keepers’ Policy Space
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Example Policies
Random: HoldBall or PassBall(k) randomly
Hold: Always HoldBall
Hand-coded:

If no taker within 10m: HoldBall
Else If there’s a good pass: PassBall(k)
Else HoldBall
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Mapping Keepaway to RL
Discrete-time, episodic, distributed RL

• Simulator operates in discrete time steps, t = 0, 1, 2, . . .,
each representing 100 msec

• Episode: s0, a0, r1, s1, . . . , st, at, rt+1, st+1, . . . , rT , sT

• at ∈ {HoldBall, PassBall(k), GoToBall, GetOpen}

• rt = 1

• V π(s) = E{T | s0 = s}

• Goal: Find π∗ that maximizes V for all s

Peter Stone



Representation
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s: 13 Continuous State Variables

• 11 distances among players, ball, and center

• 2 angles to takers along passing lanes

Peter Stone



Function Approximation: Tile Coding

• Form of sparse, coarse coding based on CMACS [Albus,

1981]

Tiling #1

State Variable #1

Tiling #2
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• Tiled state variables individually (13)
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Policy Learning
• Learn Qπ(s, a): Expected possession time

Peter Stone



Policy Learning
• Learn Qπ(s, a): Expected possession time

• Linear Sarsa(λ) — each agent learns independently

− On-policy method: advantages over e.g. Q-learning
− Not known to converge, but works (e.g. [Sutton, 1996])
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Main Result
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1 hour = 720 5-second episodes
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Varied Field Size
Testing Field Size

Keepers 15x15 20x20 25x25
Trained 15x15 11.0 9.8 7.2
on field 20x20 10.7 15.0 12.2
of size 25x25 6.3 10.4 15.0

Hand 4.3 5.6 8.0
Benchmarks Hold 3.9 4.8 5.2

Random 4.2 5.5 6.4

• Single runs
• learning specific to fields
− mechanism generalizes better than policies
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4 vs. 3 Keeper Learning
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• Preliminary: taker learning successful as well
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What’s new in Keepaway?
• 5 vs. 4
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What’s new in Keepaway?
• 5 vs. 4

• Transfer learning (Taylor, Liu)

• Evolutionary learning (Taylor and Whiteson)

• Half field offense (Kalyanakrishnan)

− Communication updates when others have the ball

• Any coevolution?

Peter Stone



Genetic algorithms
• Keep a population of individuals

• Each generation

– Evaluate their fitness
– Throw out the bad ones
– Change the good ones randomly
– Repeat
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Genetic algorithms
• Keep a population of individuals

• Each generation

– Evaluate their fitness
– Throw out the bad ones
– Change the good ones randomly
– Repeat

The fitness function matters

• Playing against top-notch competition→ no info

• Playing against a single foe→ too brittle
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Rosin and Belew
• Co-evolve 2 populations: gives software and test suites

item “New genotypes arise to defeat old ones”

– Why not self play?
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Rosin and Belew
• Co-evolve 2 populations: gives software and test suites

item “New genotypes arise to defeat old ones”

– Why not self play?

• 2 techniques to keep diversity

– Fitness sharing: prevent extinctions
– Opponent sampling: use range of opponents to test

• Test on TTT, Nim (and go)

– Millions of generations
– Worse than perfect play
– Why compare against old methods?

Peter Stone



Collaborative Co-Evolution
• Learn collaborative behaviors simultaneously
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Collaborative Co-Evolution
• Learn collaborative behaviors simultaneously

• Applied in pursuit domain among others

• Simultaneous learning by teammates could be thought of
in this way as well.

Peter Stone


