CS344M
Autonomous Multiagent Systems
Spring 2008

Prof: Peter Stone

Department of Computer Sciences
The University of Texas at Austin
Good Afternoon, Colleagues

Are there any questions?
Logistics

- Final reports due to me on Thursday
- Just one point off if turned in at my office by Friday at 3:30pm
 - Only if you’re in class on Thursday!
Discussion

• Should agents model emotions?
Discussion

The Turing Test
Course recap

- You’ve read.
Course recap

- You’ve read.
- You’ve reacted and formed opinions.
Course recap

- You’ve read.
- You’ve reacted and formed opinions.
- You’ve spoken.
Course recap

- You’ve read.
- You’ve reacted and formed opinions.
- You’ve spoken.
- You’ve written.
Course recap

- You’ve read.
- You’ve reacted and formed opinions.
- You’ve spoken.
- You’ve written.
- You’ve coded for a task with no right answer and no way of knowing that you’re done.
Course recap

- You’ve read.
- You’ve reacted and formed opinions.
- You’ve spoken.
- You’ve written.
- You’ve coded for a task with no right answer and no way of knowing that you’re done.

Do you like CS research?
What have we covered?

1. Autonomous agents: What is an agent?
What have we covered?

1. Autonomous agents: What is an agent?
2. Agent architectures: Subsumption, TCA
What have we covered?

1. Autonomous agents: What is an agent?
2. Agent architectures: Subsumption, TCA
3. Multiagent Systems: Overview, subsumption
<table>
<thead>
<tr>
<th>What have we covered?</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Autonomous agents:</td>
<td>What is an agent?</td>
</tr>
<tr>
<td>2. Agent architectures:</td>
<td>Subsumption, TCA</td>
</tr>
<tr>
<td>3. Multiagent Systems:</td>
<td>Overview, subsumption</td>
</tr>
<tr>
<td>4. Communication and Teamwork:</td>
<td>KQML, Joint Intentions</td>
</tr>
</tbody>
</table>
What have we covered?

1. Autonomous agents: What is an agent?
2. Agent architectures: Subsumption, TCA
3. Multiagent Systems: Overview, subsumption
4. Communication and Teamwork: KQML, Joint Intentions
5. RoboCup case studies
What have we covered?

1. **Autonomous agents:** What is an agent?
2. **Agent architectures:** Subsumption, TCA
3. **Multiagent Systems:** Overview, subsumption
4. **Communication and Teamwork:** KQML, Joint Intentions
5. **RoboCup case studies**
6. **Swarms and ant-based approaches:** “Go to the Ant”
<table>
<thead>
<tr>
<th>What have we covered?</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Autonomous agents: What is an agent?</td>
</tr>
<tr>
<td>2. Agent architectures: Subsumption, TCA</td>
</tr>
<tr>
<td>3. Multiagent Systems: Overview, subsumption</td>
</tr>
<tr>
<td>4. Communication and Teamwork: KQML, Joint Intentions</td>
</tr>
<tr>
<td>5. RoboCup case studies</td>
</tr>
<tr>
<td>6. Swarms and ant-based approaches: “Go to the Ant”</td>
</tr>
<tr>
<td>7. Applications: Air traffic, intersection traffic</td>
</tr>
</tbody>
</table>
What have we covered?

1. **Autonomous agents:** What is an agent?
2. **Agent architectures:** Subsumption, TCA
3. **Multiagent Systems:** Overview, subsumption
4. **Communication and Teamwork:** KQML, Joint Intentions
5. **RoboCup case studies**
6. **Swarms and ant-based approaches:** “Go to the Ant”
7. **Applications:** Air traffic, intersection traffic
8. **Game theory:** Nash equilibrium
What have we covered?

1. Autonomous agents: What is an agent?
2. Agent architectures: Subsumption, TCA
3. Multiagent Systems: Overview, subsumption
4. Communication and Teamwork: KQML, Joint Intentions
5. RoboCup case studies
6. Swarms and ant-based approaches: “Go to the Ant”
7. Applications: Air traffic, intersection traffic
8. Game theory: Nash equilibrium
9. Statistical measurements: t-tests
What have we covered?

1. Autonomous agents: What is an agent?
2. Agent architectures: Subsumption, TCA
3. Multiagent Systems: Overview, subsumption
4. Communication and Teamwork: KQML, Joint Intentions
5. RoboCup case studies
6. Swarms and ant-based approaches: “Go to the Ant”
7. Applications: Air traffic, intersection traffic
8. Game theory: Nash equilibrium
9. Statistical measurements: t-tests
10. Agent modeling: coaching, RMM, tracking teams
What have we covered?

1. Autonomous agents: What is an agent?
2. Agent architectures: Subsumption, TCA
3. Multiagent Systems: Overview, subsumption
4. Communication and Teamwork: KQML, Joint Intentions
5. RoboCup case studies
6. Swarms and ant-based approaches: “Go to the Ant”
7. Applications: Air traffic, intersection traffic
8. Game theory: Nash equilibrium
9. Statistical measurements: t-tests
10. Agent modeling: coaching, RMM, tracking teams
11. Distributed rational decision making: voting,...
What have we covered?

1. Autonomous agents: What is an agent?
2. Agent architectures: Subsumption, TCA
3. Multiagent Systems: Overview, subsumption
4. Communication and Teamwork: KQML, Joint Intentions
5. RoboCup case studies
6. Swarms and ant-based approaches: “Go to the Ant”
7. Applications: Air traffic, intersection traffic
8. Game theory: Nash equilibrium
9. Statistical measurements: t-tests
10. Agent modeling: coaching, RMM, tracking teams
11. Distributed rational decision making: voting...
12. Auctions: FCC spectrum auctions, TAC
What have we covered?

1. Autonomous agents: What is an agent?
2. Agent architectures: Subsumption, TCA
3. Multiagent Systems: Overview, subsumption
4. Communication and Teamwork: KQML, Joint Intentions
5. RoboCup case studies
6. Swarms and ant-based approaches: “Go to the Ant”
7. Applications: Air traffic, intersection traffic
8. Game theory: Nash equilibrium
9. Statistical measurements: t-tests
10. Agent modeling: coaching, RMM, tracking teams
11. Distributed rational decision making: voting, ...
12. Auctions: FCC spectrum auctions, TAC
13. Multiagent learning: multiagent RL
What have we covered?

1. **Autonomous agents:** What is an agent?
2. **Agent architectures:** Subsumption, TCA
3. **Multiagent Systems:** Overview, subsumption
4. **Communication and Teamwork:** KQML, Joint Intentions
5. **RoboCup case studies**
6. **Swarms and ant-based approaches:** “Go to the Ant”
7. **Applications:** Air traffic, intersection traffic
8. **Game theory:** Nash equilibrium
t-tests
9. **Statistical measurements:**
10. **Agent modeling:** coaching, RMM, tracking teams
11. **Distributed rational decision making:** voting, ...
12. **Auctions:** FCC spectrum auctions, TAC
13. **Multiagent learning:** multiagent RL
14. **Entertainment agents** chatbots, music bots
The original question

- What is an agent?
Course recap

• I’ve been impressed by the levels of discussions we’ve had in class

• I’m happy with the progress in writing and speaking that many of you have made

• I’m proud of all of you for sticking with it through such a demanding course
Course recap

- I’ve been impressed by the levels of discussions we’ve had in class
- I’m happy with the progress in writing and speaking that many of you have made
- I’m proud of all of you for sticking with it through such a demanding course

THANKS!!!
Surveys

- Positive and negative feedback useful
Surveys

- Positive and negative feedback useful
- Invitation to send more feedback by email
Surveys

• Positive and negative feedback useful

• Invitation to send more feedback by email
 – Should the course be run again?
 – How should it change?
Surveys

- Positive and negative feedback useful
- Invitation to send more feedback by email
 - Should the course be run again?
 - How should it change?
- Most important: course rating, instructor rating, written comments
Next Meeting

- The tournament!
Next Meeting

- The tournament!
- Wednesday, May 7th
- TAY 3.128
- 10am–noon
Next Meeting

- The tournament!
- Wednesday, May 7th
- TAY 3.128
- 10am–noon
- Come prepared to talk (informally) about your team