Good Afternoon, Colleagues

Are there any questions?

Peter Stone
Logistics

• Programming assignment 4 — any questions?
Logistics

- Programming assignment 4 — any questions?
- Week 5 assignments are up
Logistics

- Programming assignment 4 — any questions?
- Week 5 assignments are up
- Discussion scheduling
Logistics

- Programming assignment 4 — any questions?
- Week 5 assignments are up
- Discussion scheduling
- Final exam time: Wednesday 5/7, 10–noon
Logistics

• Programming assignment 4 — any questions?
• Week 5 assignments are up
• Discussion scheduling

• Final exam time: Wednesday 5/7, 10–noon
 – No exam
 – Final tournament and oral project presentation
Some Definitions

- Distributed Computing:
Some Definitions

- **Distributed Computing**: Processors share data, but not control. Focus on low-level parallelization, synchronization.
Some Definitions

- **Distributed Computing**: Processors share data, but not control. Focus on low-level parallelization, synchronization.

- **Distributed AI**:

 [Further content not visible in the image]
Some Definitions

- **Distributed Computing**: Processors share data, but not control. Focus on low-level parallelization, synchronization.

- **Distributed AI**: Control as well as data is distributed. Focus on problem solving, communication, and coordination.
Some Definitions

- **Distributed Computing**: Processors share data, but not control. Focus on low-level parallelization, synchronization.

- **Distributed AI**: Control as well as data is distributed. Focus on problem solving, communication, and coordination.

- **Distributed Problem Solving**:

Some Definitions

- **Distributed Computing**: Processors share data, but not control. Focus on low-level parallelization, synchronization.

- **Distributed AI**: Control as well as data is distributed. Focus on problem solving, communication, and coordination.

- **Distributed Problem Solving**: Task decomposition and/or solution synthesis.
Some Definitions

- **Distributed Computing**: Processors share data, but not control. Focus on low-level parallelization, synchronization.

- **Distributed AI**: Control as well as data is distributed. Focus on problem solving, communication, and coordination.

- **Distributed Problem Solving**: Task decomposition and/or solution synthesis.

- **Multiagent Systems**
Some Definitions

- **Distributed Computing** : Processors share data, but not control. Focus on low-level parallelization, synchronization.

- **Distributed AI** : Control as well as data is distributed. Focus on problem solving, communication, and coordination.

- **Distributed Problem Solving** : Task decomposition and/or solution synthesis.

- **Multiagent Systems** : Behavior coordination or behavior management.
Some Definitions

- **Distributed Computing**: Processors share data, but not control. Focus on low-level parallelization, synchronization.

- **Distributed AI**: Control as well as data is distributed. Focus on problem solving, communication, and coordination.

- **Distributed Problem Solving**: Task decomposition and/or solution synthesis.

- **Multiagent Systems**: Behavior coordination or behavior management.
 - No necessary guarantees about other agents.
 - Individual behaviors typically simple relative to interaction issues.
Multiagent Systems

- Study, behavior, construction of possibly preexisting autonomous agents that interact with each other.
 - incomplete information for agents
 - no global control
 - decentralized data
 - asynchronous computation
Why Multiagent Systems?
Why Multiagent Systems?

(7)

- Some domains require it. (Hospital scheduling)
- Interoperation of legacy systems
- Parallelism.
- Robustness.
- Scalability
- Simpler programming.
- “Intelligence is deeply and inevitably coupled with interaction.” – Gerhard Weiss
Organizations

• Hierarchy:
Organizations

- **Hierarchy**: authority from above
Organizations

- **Hierarchy**: authority from above

- **Community of Experts:**
Organizations

• **Hierarchy**: authority from above

• **Community of Experts**: specialists, mutual adjustment
Organizations

• **Hierarchy**: authority from above

• **Community of Experts**: specialists, mutual adjustment

• **Market**:
Organizations

- **Hierarchy**: authority from above
- **Community of Experts**: specialists, mutual adjustment
- **Market**: bid for tasks and resources; contracts
Organizations

- **Hierarchy**: authority from above
- **Community of Experts**: specialists, mutual adjustment
- **Market**: bid for tasks and resources; contracts
- **Scientific community**:

Department of Computer Sciences
The University of Texas at Austin
Organizations

• **Hierarchy**: authority from above

• **Community of Experts**: specialists, mutual adjustment

• **Market**: bid for tasks and resources; contracts

• **Scientific community**: full solutions (perhaps with varying information) combined
Issues and Challenges

• How to break down and resynthesize the problem among agents
Issues and Challenges

- How to break down and resynthesize the problem among agents
- Communication/interaction protocols
Issues and Challenges

• How to break down and resynthesize the problem among agents

• Communication/interaction protocols

• Maintain coherence, stability: guarantees?
 – Coherence is a global property
Issues and Challenges

• How to break down and resynthesize the problem among agents

• Communication/interaction protocols

• Maintain coherence, stability: guarantees?
 – Coherence is a global property

• Representation by agents of each other and interactions
Issues and Challenges

- How to break down and resynthesize the problem among agents
- Communication/interaction protocols
- Maintain coherence, stability: guarantees?
 - Coherence is a global property
- Representation by agents of each other and interactions
- Reconciling different points of view
Issues and Challenges

• How to break down and resynthesize the problem among agents

• Communication/interaction protocols

• Maintain coherence, stability: guarantees?
 – Coherence is a global property

• Representation by agents of each other and interactions

• Reconciling different points of view

• Engineering
Dimensions and issues

- cooperative vs. competitive
- communication
- trust
- recursive modeling
- coalitions
- game theory
Dimensions and issues

- cooperative vs. competitive
- communication
- trust
- recursive modeling
- coalitions
- game theory

Convoy example
Individual Agents

What did Sycara say about reactive vs. deliberative agents?
Individual Agents

• Purely reactive agents have disadvantages
 – Can’t react to nonlocal info or predict effects on global behavior
 – hard to engineer

• Hybrid approach better

• Hard to evaluate agent architecture against one another