Good Afternoon, Colleagues

Are there any questions?
Some Definitions

• **Distributed Computing**: Processors share data, but not control. Focus on low-level parallelization, synchronization.
Some Definitions

- **Distributed Computing**: Processors share data, but not control. Focus on low-level parallelization, synchronization.

- **Distributed AI**: Control as well as data is distributed. Focus on problem solving, communication, and coordination.

- **Distributed Problem Solving**: Task decomposition and/or solution synthesis.

- **Multiagent Systems**: Behavior coordination or behavior management.
 - No necessary guarantees about other agents.
 - Individual behaviors typically simple relative to interaction issues.
Multiagent Systems

- Study, behavior, construction of **possibly preexisting** autonomous agents that interact with each other.
 - incomplete information for agents
 - no global control
 - decentralized data
 - asynchronous computation
Why Multiagent Systems?

(7)

• Some domains require it. (Hospital scheduling)

• Interoperation of legacy systems

• Parallelism.

• Robustness.

• Scalability

• Simpler programming.

• “Intelligence is deeply and inevitably coupled with interaction.” – Gerhard Weiss
Organizations

- **Hierarchy**: authority from above

- **Community of Experts**: specialists, mutual adjustment

- **Market**: bid for tasks and resources; contracts

- **Scientific community**: full solutions (perhaps with varying information) combined
Issues and Challenges

• How to break down and resynthesize the problem among agents

• Communication/interaction protocols

• Maintain coherence, stability: guarantees?
 – Coherence is a global property

• Representation by agents of each other and interactions

• Reconciling different points of view

• Engineering
Dimensions and issues

- cooperative vs. competitive
- communication
- trust
- recursive modeling
- coalitions
- game theory

Convoy example
Individual Agents

What did Sycara say about reactive vs. deliberative agents?
Individual Agents

- Purely reactive agents have disadvantages
 - Can’t react to nonlocal info or predict effects on global behavior
 - Hard to engineer

- Hybrid approach better

- Hard to evaluate agent architecture against one another
Conflicts, Resources

- Omniscience for one agent creates bottleneck
Conflicts, Resources

- Omniscience for one agent creates bottleneck

- Self-interested agents: each agent maximizes own local utility
 - Will that be good for global performance? (invisible hand)
Conflicts, Resources

- Omniscience for one agent creates bottleneck

- Self-interested agents: each agent maximizes own local utility
 - Will that be good for global performance? (invisible hand)
 - Pitfall: tragedy of the commons
 - Pitfall: no stability
 - Pitfall: lying
Conflicts, Resources

- Omniscience for one agent creates bottleneck

- Self-interested agents: each agent maximizes own local utility
 - Will that be good for global performance? (invisible hand)
 - Pitfall: tragedy of the commons
 - Pitfall: no stability
 - Pitfall: lying

- Market-based methods/auctions
Conflicts, Resources

- Omniscience for one agent creates bottleneck

- Self-interested agents: each agent maximizes own local utility
 - Will that be good for global performance? (invisible hand)
 - Pitfall: tragedy of the commons
 - Pitfall: no stability
 - Pitfall: lying

- Market-based methods/auctions

- Negotiation, game theory
Multiagent Planning

- Complex individual agents
- Teamwork modeling
 - Modeling of teammates and opponents
- Recent: emphasis on flexibility in dynamic environments
Communication

• Middle agents (brokers)

• Standard languages

• Ontologies

More next week
Mataric: Adaptive Group Behavior

- Built using subsumption architecture
Mataric: Adaptive Group Behavior

- Built using subsumption architecture
- More complex behaviors than in Brooks’ article
 - Multiagent
Mataric: Adaptive Group Behavior

- Built using subsumption architecture
- More complex behaviors than in Brooks’ article
 - Multiagent
- Hit a complexity limit?
 - (Subsumption or 3T more prevalent?)
Basis Behaviors

• Necessary and sufficient, not “optimal”
Basis Behaviors

- Necessary and sufficient, not “optimal”
 - Task dependent
 - Combinations: complementary, contradictory
Basis Behaviors

- Necessary and sufficient, not “optimal”
 - Task dependent
 - Combinations: complementary, contradictory

- Example: locomotion
Basis Behaviors

- Necessary and sufficient, not “optimal”
 - Task dependent
 - Combinations: complementary, contradictory

- Example: locomotion
 - Safe-wandering, following, dispersion, aggregation, homing
Basis Behaviors

- Necessary and sufficient, not “optimal”
 - Task dependent
 - Combinations: complementary, contradictory

- Example: locomotion
 - Safe-wandering, following, dispersion, aggregation, homing
 - What 2 multiagent architectures does she compare?
Basis Behaviors

- Necessary and sufficient, not “optimal”
 - Task dependent
 - Combinations: complementary, contradictory

- Example: locomotion
 - Safe-wandering, following, dispersion, aggregation, homing
 - What 2 multiagent architectures does she compare?
 - Anything special about this domain? Or could it apply just as well to others?
Discussion

Basis behaviors for other tasks
Discussion

Basis behaviors for other tasks

- Can human behavior be thought of as arising from a set of basis behaviors?
- What kinds of basis behaviors would they be?
Discussion

Basis behaviors for other tasks

- Can human behavior be thought of as arising from a set of basis behaviors?
- What kinds of basis behaviors would they be?
- Would they be the same as the ones Mataric listed?
- Are there others?
Negotiation

- Example: Split the dollar
 - One person makes an offer
 - Other accepts or rejects
 - If rejects, both get nothing
Negotiation

- Example: Split the dollar
 - One person makes an offer
 - Other accepts or rejects
 - If rejects, both get nothing

- Another version
 - One person makes an offer
 - Other accepts, rejects, or counters
 - If counters, $.05 lost
 - Game ends with an accept or reject