CS344M
Autonomous Multiagent Systems
Spring 2008

Prof: Peter Stone

Department or Computer Sciences
The University of Texas at Austin
Good Afternoon, Colleagues

Are there any questions?
Logistics

- Next week’s readings posted
Logistics

• Next week’s readings posted

• Guest lecture on Tuesday — Ben Kuipers
Logistics

- Next week’s readings posted
- Guest lecture on Tuesday — Ben Kuipers
- Holte talk today at 2pm
Logistics

- Next week’s readings posted
- Guest lecture on Tuesday — Ben Kuipers
- Holte talk today at 2pm
- Gates talk tomorrow!
Logistics

- Next week’s readings posted
- Guest lecture on Tuesday — Ben Kuipers
- Holte talk today at 2pm
- Gates talk tomorrow!
- Use the undergrad writing center!
Final Projects

Proposal (2/28): 3+ pages
• What you’re going to do; graded on writing

Progress Report (4/3): 5+ pages + binaries + logs
• What you’ve been doing; graded on writing

Team (4/29): source + binaries
• The tournament entry; make sure it runs!

Final Report (5/1): 8+ pages
• A term paper; the main component of your grade

Tournament (5/7): nothing due
• Oral presentation

Due at beginning of classes
Overview of the Readings

Darwin: genetic programming approach
Overview of the Readings

Darwin: genetic programming approach

Stone and McAllester: Architecture for action selection
Overview of the Readings

Darwin: Genetic programming approach

Stone and McAllester: Architecture for action selection

Riley: Coach competition, extracting models
Overview of the Readings

Darwin: genetic programming approach

Stone and McAllester: Architecture for action selection

Riley: Coach competition, extracting models

Kuhlmann: Learning for coaching
Overview of the Readings

Darwin: genetic programming approach

Stone and McAllester: Architecture for action selection

Riley: Coach competition, extracting models

Kuhlmann: Learning for coaching

Kok03: Coordination graphs
Overview of the Readings

Darwin: genetic programming approach

Stone and McAllester: Architecture for action selection

Riley: Coach competition, extracting models

Kuhlmann: Learning for coaching

Kok03: Coordination graphs

Riedmiller05: Reinforcement learning
Evolutionary Computation

- Motivated by biological evolution: GA, GP
Evolutionary Computation

- Motivated by biological evolution: GA, GP
- Search through a space
Evolutionary Computation

- Motivated by biological evolution: GA, GP

- Search through a space
 - Need a representation, fitness function
 - Probabilistically apply search operators to set of points in search space
Evolutionary Computation

- Motivated by biological evolution: GA, GP
- Search through a space
 - Need a representation, fitness function
 - Probabilistically apply search operators to set of points in search space
- Randomized, parallel hill-climbing through space
Evolutionary Computation

- Motivated by biological evolution: GA, GP

- Search through a space
 - Need a **representation, fitness function**
 - Probabilistically apply search operators to set of points in search space

- Randomized, parallel hill-climbing through space

- Learning is an optimization problem (fitness)
Evolutionary Computation

- Motivated by biological evolution: GA, GP
- Search through a space
 - Need a representation, fitness function
 - Probabilistically apply search operators to set of points in search space
- Randomized, parallel hill-climbing through space
- Learning is an optimization problem (fitness)

Some slides from *Machine Learning* (Mitchell, 1997)
Darwin United

• More ambitious follow-up to Luke, 97 (made 2nd round)
Darwin United

- More ambitious follow-up to Luke, 97 (made 2nd round)
- Motivated in part by my detailed team construction
Darwin United

- More ambitious follow-up to Luke, 97 (made 2nd round)
- Motivated in part by my detailed team construction
- Evolves whole teams — lexicographic fitness function
Darwin United

- More ambitious follow-up to Luke, 97 (made 2nd round)
- Motivated in part by my detailed team construction
- Evolves whole teams — lexicographic fitness function
- Evolved on huge (at the time) hypercube
Darwin United

- More ambitious follow-up to Luke, 97 (made 2nd round)
- Motivated in part by my detailed team construction
- Evolves whole teams — lexicographic fitness function
- Evolved on huge (at the time) hypercube
- Lots of spinning, but figured out dribbling, offsides
Darwin United

- More ambitious follow-up to Luke, 97 (made 2nd round)
- Motivated in part by my detailed team construction
- Evolves whole teams — lexicographic fitness function
- Evolved on huge (at the time) hypercube
- Lots of spinning, but figured out dribbling, offsides
- 1-1-1 record. Tied a good team, but didn’t advance
Darwin United

- More ambitious follow-up to Luke, 97 (made 2nd round)
- Motivated in part by my detailed team construction
- Evolves whole teams — lexicographic fitness function
- Evolved on huge (at the time) hypercube
- Lots of spinning, but figured out dribbling, offsides
- 1-1-1 record. Tied a good team, but didn’t advance
- Success of the method, but not pursued
Class Discussion

Jose Falcon on automated commentary