Good Afternoon, Colleagues

Are there any questions?

Peter Stone
Good Afternoon, Colleagues

Are there any questions?

- Can GT apply to the real world?
- Are there other GT programming contests?
- What if you don’t know outcomes ahead of time?
Logistics

- No more slack in the discussion schedule
Logistics

- No more slack in the discussion schedule

- Two talks by Rob Holte
T-test vs. Paired T-test

- Is the right half of the class or the left half taller?
T-test vs. Paired T-test

- Is the right half of the class or the left half taller?
- Did you weigh less after the class than before?
T-test vs. Paired T-test

- Is the right half of the class or the left half taller?
- Did you weigh less after the class than before?
- Who’s better at pacman? Chinmay or Neil?
T-test vs. Paired T-test

- Is the right half of the class or the left half taller?
- Did you weigh less after the class than before?
- Who’s better at pacman? Chinmay or Neil?
- Who’s better at video games in general?
More Programming Competitions

- Repeat of IPD: multiple collaborative agents win
More Programming Competitions

- Repeat of IPD: multiple collaborative agents win
- RoShamBo: statistics vs. direct history
Game Theory

- Multiagent systems
- Economics
- Social science, law, etc.
Bach/Stravinsky

- My wife and I agree to meet at a concert
My wife and I agree to meet at a concert

Unfortunately, there are 2: Back and Stravinsky
Bach/Stravinsky

- My wife and I agree to meet at a concert
- Unfortunately, there are 2: Back and Stravinsky
- No time to get in touch with each other
Bach/Stravinsky

- My wife and I agree to meet at a concert
- Unfortunately, there are 2: Back and Stravinsky
- No time to get in touch with each other
- I prefer Stravinsky, she prefers Bach
Bach/Stravinsky

• My wife and I agree to meet at a concert

• Unfortunately, there are 2: Back and Stravinsky

• No time to get in touch with each other

• I prefer Stravinsky, she prefers Bach

• But most of all, we want to be together
Bach/Stravinsky

- My wife and I agree to meet at a concert
- Unfortunately, there are 2: Back and Stravinsky
- No time to get in touch with each other
- I prefer Stravinsky, she prefers Bach
- But most of all, we want to be together
- Propose a payoff matrix
<table>
<thead>
<tr>
<th></th>
<th>Wife</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>B</td>
</tr>
<tr>
<td>S</td>
<td>2,1</td>
</tr>
<tr>
<td>S</td>
<td>0,0</td>
</tr>
<tr>
<td>Me</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>0,0</td>
</tr>
<tr>
<td>B</td>
<td>1,2</td>
</tr>
</tbody>
</table>
Matching Pennies

- We each put a penny down covered
- If they match, I win, if they don’t, you win
Matching Pennies

- We each put a penny down covered
- If they match, I win, if they don’t, you win

\[
\begin{array}{c|cc}
 & H & T \\
\hline
H & 1, -1 & -1, 1 \\
T & -1, 1 & 1, -1 \\
\end{array}
\]
Matching Pennies

- We each put a penny down covered
- If they match, I win, if they don’t, you win

\begin{tabular}{c|cc|}
 & H & T \\
\hline
H & 1,-1 & -1,1 \\
T & -1,1 & 1,-1 \\
\end{tabular}

Nash equilibrium?
Mixed strategy equilibrium

<table>
<thead>
<tr>
<th>Player 1</th>
<th>Action 1</th>
<th>Action 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Action 1</td>
<td>4,8</td>
<td>2,0</td>
</tr>
<tr>
<td>Action 2</td>
<td>6,2</td>
<td>0,8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Player 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Action 1</td>
</tr>
<tr>
<td>Action 2</td>
</tr>
</tbody>
</table>
Mixed strategy equilibrium

<table>
<thead>
<tr>
<th></th>
<th>Player 2</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Action 1</td>
<td>4,8</td>
<td>2,0</td>
</tr>
<tr>
<td>Action 2</td>
<td>6,2</td>
<td>0,8</td>
</tr>
</tbody>
</table>

Player 1

- What if player 2 picks action 1 3/4 of the time?
Mixed strategy equilibrium

<table>
<thead>
<tr>
<th></th>
<th>Player 1</th>
<th>Player 2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Action 1</td>
<td>Action 1</td>
</tr>
<tr>
<td>Action 1</td>
<td>4,8</td>
<td></td>
</tr>
<tr>
<td>Action 2</td>
<td>6,2</td>
<td></td>
</tr>
</tbody>
</table>

- What if player 2 picks action 1 3/4 of the time?
- What if player 2 picks action 1 1/4 of the time?
Mixed strategy equilibrium

<table>
<thead>
<tr>
<th></th>
<th>Player 1</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Action 1</td>
<td>4,8</td>
<td>2,0</td>
</tr>
<tr>
<td></td>
<td>Action 2</td>
<td>6,2</td>
<td>0,8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Player 2</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Action 1</td>
<td>Action 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3/4</td>
<td>1/4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- What if player 2 picks action 1 3/4 of the time?
- What if player 2 picks action 1 1/4 of the time?
- Player 1 must be indifferent between actions 1 and 2
Mixed strategy equilibrium

<table>
<thead>
<tr>
<th></th>
<th>Player 1</th>
<th>Player 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Action 1</td>
<td>4.8</td>
<td>2.0</td>
</tr>
<tr>
<td>Action 2</td>
<td>6.2</td>
<td>0.8</td>
</tr>
</tbody>
</table>

- What if player 2 picks action 1 3/4 of the time?
- What if player 2 picks action 1 1/4 of the time?
- Player 1 must be indifferent between actions 1 and 2
- Player 2 must be indifferent between actions 1 and 2
Mixed strategy equilibrium

<table>
<thead>
<tr>
<th>Player 1</th>
<th>Action 1</th>
<th>Action 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Action 1</td>
<td>4,8</td>
<td>2,0</td>
</tr>
<tr>
<td>Action 2</td>
<td>6,2</td>
<td>0,8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Player 2</th>
<th>Action 1</th>
<th>Action 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Action 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Action 2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- What if player 2 picks action 1 3/4 of the time?
- What if player 2 picks action 1 1/4 of the time?
- Player 1 must be indifferent between actions 1 and 2
- Player 2 must be indifferent between actions 1 and 2

Do actual numbers matter?