CS378 Autonomous Multiagent Systems Spring 2005

Prof: Peter Stone

TA: Mazda Ahmadi

Department of Computer Sciences
The University of Texas at Austin

Week 12b: Thursday, April 14th

Good Afternoon, Colleagues

Are there any questions?

Good Afternoon, Colleagues

Are there any questions?

How can you make agents vote insincerely?

Logistics

Progress reports back on Tuesday

Logistics

- Progress reports back on Tuesday
- Reactions to Greg's discussion on opponent modeling?

Logistics

- Progress reports back on Tuesday
- Reactions to Greg's discussion on opponent modeling?
 - Coach competition opportunity

Class Discussion

Bobby Narula on game theory in practice

Consumers: utilities, endowments

Producers: production possibility sets

Variables: prices on goods

Consumers: utilities, endowments

Producers: production possibility sets

Variables: prices on goods

Equilibrium: allocation (prices) such that consumers

Consumers: utilities, endowments

Producers: production possibility sets

Variables: prices on goods

Equilibrium: allocation (prices) such that consumers

maximize preferences, producers maximize profits

Assumption: agent doesn't affect prices

Consumers: utilities, endowments

Producers: production possibility sets

Variables: prices on goods

Equilibrium: allocation (prices) such that consumers

- Assumption: agent doesn't affect prices
 - Only true if market is infinitely large
 - Else, strategic bidding (like bargaining) possible

Consumers: utilities, endowments

Producers: production possibility sets

Variables: prices on goods

Equilibrium: allocation (prices) such that consumers

- Assumption: agent doesn't affect prices
 - Only true if market is infinitely large
 - Else, strategic bidding (like bargaining) possible
- Assumption: no externalities

Consumers: utilities, endowments

Producers: production possibility sets

Variables: prices on goods

Equilibrium: allocation (prices) such that consumers

- Assumption: agent doesn't affect prices
 - Only true if market is infinitely large
 - Else, strategic bidding (like bargaining) possible
- Assumption: no externalities
 - Utilities or production sets don't depend on others'

Consumers: utilities, endowments

Producers: production possibility sets

Variables: prices on goods

Equilibrium: allocation (prices) such that consumers

- Assumption: agent doesn't affect prices
 - Only true if market is infinitely large
 - Else, strategic bidding (like bargaining) possible
- Assumption: no externalities
 - Utilities or production sets don't depend on others'
 - Braess' paradox

- Two people bargaining, each with a preference over outcomes O
- \bullet Let o^* be the selected outcome

- Two people bargaining, each with a preference over outcomes O
- \bullet Let o^* be the selected outcome
- Example: "split the dollar"

- Two people bargaining, each with a preference over outcomes O
- \bullet Let o^* be the selected outcome
- Example: "split the dollar"
 - One person makes offer o
 - Other rejects with probaility p(o) based on offer
 - If rejects, both get nothing

- Two people bargaining, each with a preference over outcomes O
- \bullet Let o^* be the selected outcome
- Example: "split the dollar"
 - One person makes offer o
 - Other rejects with probaility p(o) based on offer
 - If rejects, both get nothing
- Another version
 - One person makes an offer
 - Other accepts, rejects, or counters
 - If counters, \$.05 lost
 - Game ends with an accept or reject

Nash Bargaining Solution

Unique solution that satisfies:

Nash Bargaining Solution

Unique solution that satisfies:

Invariance: only preference *orders* matter

Anonymity: no discrimination

Pareto efficiency: if one does better, other does worse

Independence of irrelevant alternatives: removing outcomes

doesn't change things

Nash Bargaining Solution

Unique solution that satisfies:

Invariance: only preference *orders* matter

Anonymity: no discrimination

Pareto efficiency: if one does better, other does worse

Independence of irrelevant alternatives: removing outcomes

doesn't change things

Maximize $u_1(o) * u_2(o)$

Contract nets: task allocation among agents

- Contract nets: task allocation among agents
 - Contingencies
 - Leveled commitment (price)

- Contract nets: task allocation among agents
 - Contingencies
 - Leveled commitment (price)
- Coalitions

- Contract nets: task allocation among agents
 - Contingencies
 - Leveled commitment (price)
- Coalitions
 - Formation
 - Optimization within
 - Payoff division

- OCSM-contracts: original, cluster, swap, multiagent
 - Hill-climbing leads to optimum
 - Without any type, may be no sequence to optimum

- OCSM-contracts: original, cluster, swap, multiagent
 - Hill-climbing leads to optimum
 - Without any type, may be no sequence to optimum
- Backing out of contracts

- OCSM-contracts: original, cluster, swap, multiagent
 - Hill-climbing leads to optimum
 - Without any type, may be no sequence to optimum
- Backing out of contracts
 - Contingency (future events)

- OCSM-contracts: original, cluster, swap, multiagent
 - Hill-climbing leads to optimum
 - Without any type, may be no sequence to optimum
- Backing out of contracts
 - Contingency (future events)
 - Leveled commitment (price)

- OCSM-contracts: original, cluster, swap, multiagent
 - Hill-climbing leads to optimum
 - Without any type, may be no sequence to optimum
- Backing out of contracts
 - Contingency (future events)
 - Leveled commitment (price)
 - What are some of the tradeoffs?

Contingency problems:

Contingency problems:

1. Hard to track all contingencies

Contingency problems:

- 1. Hard to track all contingencies
- 2. Could be impossible to enumerate all possible contingencies

Contingency problems:

- 1. Hard to track all contingencies
- 2. Could be impossible to enumerate all possible contingencies
- 3. What if only one agent observes that relevant event happened?

Contingency problems:

- 1. Hard to track all contingencies
- 2. Could be impossible to enumerate all possible contingencies
- 3. What if only one agent observes that relevant event happened?

Leveled commitment problems:

Contingency problems:

- 1. Hard to track all contingencies
- 2. Could be impossible to enumerate all possible contingencies
- 3. What if only one agent observes that relevant event happened?

Leveled commitment problems:

1. Breacher's gain may be smaller than victim's loss

Contingency problems:

- 1. Hard to track all contingencies
- 2. Could be impossible to enumerate all possible contingencies
- 3. What if only one agent observes that relevant event happened?

Leveled commitment problems:

- 1. Breacher's gain may be smaller than victim's loss
- 2. May decommit insincerely (wait for other) inefficent contracts executed.

Coalitions

- Formation
- Optimization within
- Payoff division

DRDM Summary

For many agents: voting, general equilibrium, auctions

For fewer agents: auctions, contract nets, bargaining

Possible in all: coalitions

DRDM Summary

For many agents: voting, general equilibrium, auctions

For fewer agents: auctions, contract nets, bargaining

Possible in all: coalitions

All self-interested, rational agents

Voting vs. auctions

- Voting: maximize social good
 - result affects all

Voting vs. auctions

- Voting: maximize social good
 - result affects all
- Auctions: maximize profit
 - result affects buyer and seller

Class Discussion

Neil Sachanandani on auctions