Week 7a: Tuesday, March 1st
Good Afternoon, Colleagues

Are there any questions?
Logistics

● Project proposal questions?
Logistics

- Project proposal questions?
- Next week’s readings posted, survey soon to be assigned
Logistics

- Project proposal questions?
- Next week’s readings posted, survey soon to be assigned
- Explore UT: Saturday 11–4:40
Logistics

- Project proposal questions?
- Next week’s readings posted, survey soon to be assigned
- Explore UT: Saturday 11–4:40
- New resources
 - Team binaries, internet league
Logistics

• Project proposal questions?

• Next week’s readings posted, survey soon to be assigned

• Explore UT: Saturday 11–4:40

• New resources
 – Team binaries, internet league
 – Some demos and extra readings
Logistics

- Project proposal questions?
- Next week’s readings posted, survey soon to be assigned
- Explore UT: Saturday 11–4:40
- New resources
 - Team binaries, internet league
 - Some demos and extra readings
 - Paper on pair programming
Motivation from real insects

- Ant colonies exhibit remarkably complex behaviors
 - Food gathering
 - Burial
 - Nest building
 - Reproduction
Motivation from real insects

- Ant colonies exhibit remarkably complex behaviors
 - Food gathering
 - Burial
 - Nest building
 - Reproduction

- Individual ants aren’t smart
 - The complexity is in the environment (Simon)
Motivation from real insects

- Ant colonies exhibit remarkably complex behaviors
 - Food gathering
 - Burial
 - Nest building
 - Reproduction

- Individual ants aren’t smart
 - The complexity is in the environment (Simon)
 - They’re easily fooled out of their element (Feinman)
Motivation from real insects

- Ant colonies exhibit remarkably complex behaviors
 - Food gathering
 - Burial
 - Nest building
 - Reproduction

- Individual ants aren’t smart
 - The complexity is in the environment (Simon)
 - They’re easily fooled out of their element (Feinman)

Model the ant, not the colony
Go to the Ant

- Complex system behavior from many simple agents
Go to the Ant

- Complex system behavior from many simple agents
- Complexity comes from interactions, the environment
Agent Definition

Agents tied to environment

- Agent = <State, Input, Output, Process>
Agent Definition

Agents tied to environment

- Agent = \langle \text{State, Input, Output, Process} \rangle
- Environment = \langle \text{State, Process} \rangle
Agent Definition

Agents tied to environment

- **Agent** = `<State, Input, Output, Process>`
- **Environment** = `<State, Process>`

Note: supports hierarchical agents
Examples from Nature

- Ants: path planning
- Ants: brood sorting
- Termites: nest building
- Wasps: task differentiation
- Birds and Fish: flocking
- Wolves: surrounding prey
Principles

- Try to avoid functional decomposition
Principles

• Try to avoid functional decomposition

• Simple agents (small, forgetful, local)
Principles

- Try to avoid functional decomposition
- Simple agents (small, forgetful, local)
- Decentralized control
Principles

• Try to avoid functional decomposition
• Simple agents (small, forgetful, local)
• Decentralized control
• System performance from interactions of many
Principles

- Try to avoid functional decomposition
- Simple agents (small, forgetful, local)
- Decentralized control
- System performance from interactions of many
- Diversity important: randomness, repulsion
Principles

- Try to avoid functional decomposition
- Simple agents (small, forgetful, local)
- Decentralized control
- System performance from interactions of many
- Diversity important: randomness, repulsion
- Embrace risk (expendability) and redundancy
Principles

- Try to avoid functional decomposition
- Simple agents (small, forgetful, local)
- Decentralized control
- System performance from interactions of many
- Diversity important: randomness, repulsion
- Embrace risk (expendability) and redundancy
- Agents should be able to share information
Principles

• Try to avoid functional decomposition
• Simple agents (small, forgetful, local)
• Decentralized control
• System performance from interactions of many
• Diversity important: randomness, repulsion
• Embrace risk (expendability) and redundancy
• Agents should be able to share information
• Mix planning with execution
Principles

- Try to avoid functional decomposition
- Simple agents (small, forgetful, local)
- Decentralized control
- System performance from interactions of many
- Diversity important: randomness, repulsion
- Embrace risk (expendability) and redundancy
- Agents should be able to share information
- Mix planning with execution
- Provide an “entropy leak”
Class Discussion

Austin Broyles on being a swarm