CS378 Autonomous Multiagent Systems Spring 2005

Prof: Peter Stone

TA: Mazda Ahmadi

Department of Computer Sciences
The University of Texas at Austin

Week 8a: Tuesday, March 8th

Good Afternoon, Colleagues

Are there any questions?

Logistics

Anyone at the job talk?

Logistics

- Anyone at the job talk?
- Surveys due Thursday

Logistics

- Anyone at the job talk?
- Surveys due Thursday
- Next week's readings posted

Overall, very good!

- Overall, very good!
- I'm going to skip the writing tutorial (for now)

- Overall, very good!
- I'm going to skip the writing tutorial (for now)
- A few common problems:

- Overall, very good!
- I'm going to skip the writing tutorial (for now)
- A few common problems:
 - No clear intro / problem statement

- Overall, very good!
- I'm going to skip the writing tutorial (for now)
- A few common problems:
 - No clear intro / problem statement
 - Lots of "what" but very little "how"....

- Overall, very good!
- I'm going to skip the writing tutorial (for now)
- A few common problems:
 - No clear intro / problem statement
 - Lots of "what" but very little "how"...
 - ... or too much how without identifying the challenges

- Overall, very good!
- I'm going to skip the writing tutorial (for now)
- A few common problems:
 - No clear intro / problem statement
 - Lots of "what" but very little "how"...
 - ... or too much how without identifying the challenges
 - Too much proposed

- Overall, very good!
- I'm going to skip the writing tutorial (for now)
- A few common problems:
 - No clear intro / problem statement
 - Lots of "what" but very little "how"...
 - ... or too much how without identifying the challenges
 - Too much proposed
 - Not enough to convince me that it will work

- Overall, very good!
- I'm going to skip the writing tutorial (for now)
- A few common problems:
 - No clear intro / problem statement
 - Lots of "what" but very little "how"...
 - ... or too much how without identifying the challenges
 - Too much proposed
 - Not enough to convince me that it will work
 - No evaluation plan

- Overall, very good!
- I'm going to skip the writing tutorial (for now)
- A few common problems:
 - No clear intro / problem statement
 - Lots of "what" but very little "how"...
 - ... or too much how without identifying the challenges
 - Too much proposed
 - Not enough to convince me that it will work
 - No evaluation plan
- My comments in black, Mazda's in blue

• Will	I be stricter on progress reports	
TIRES	Department of Computer Sciences The University of Toyas at Austin	

- Will be stricter on progress reports
 - May reflect side forrays

- Will be stricter on progress reports
 - May reflect side forrays
 - Be more realistic

- Will be stricter on progress reports
 - May reflect side forrays
 - Be more realistic
 - Be much more specific

- Will be stricter on progress reports
 - May reflect side forrays
 - Be more realistic
 - Be much more specific
 - Have something implemented and evaluated

- Concretization of BDI
 - Decision nodes, chance nodes ⇒
 beliefs, desires, intentions trees

- Concretization of BDI
 - Decision nodes, chance nodes ⇒
 beliefs, desires, intentions trees
- Real time: assume significant changes to state can be determined instantaneously

- Concretization of BDI
 - Decision nodes, chance nodes ⇒
 beliefs, desires, intentions trees
- Real time: assume significant changes to state can be determined instantaneously
 - No blind execution
 - No constant reevaluation

- Concretization of BDI
 - Decision nodes, chance nodes ⇒
 beliefs, desires, intentions trees
- Real time: assume significant changes to state can be determined instantaneously
 - No blind execution
 - No constant reevaluation

Implemented in an airport!

Class Discussion

Will Rogers on BDI

Non-deterministic (⇒ beliefs)

- Non-deterministic (⇒ beliefs)
- Action choices (⇒ intentions)

- Non-deterministic (⇒ beliefs)
- Action choices (⇒ intentions)
- Multiple objectives, possibly incompatible (⇒ desires)

- Non-deterministic (⇒ beliefs)
- Action choices (⇒ intentions)
- Multiple objectives, possibly incompatible (⇒ desires)
- Environment determines best actions (⇒ desires)

- Non-deterministic (⇒ beliefs)
- Action choices (⇒ intentions)
- Multiple objectives, possibly incompatible (⇒ desires)
- Environment determines best actions (⇒ desires)
- Incomplete information (⇒ beliefs)

- Non-deterministic (⇒ beliefs)
- Action choices (⇒ intentions)
- Multiple objectives, possibly incompatible (⇒ desires)
- Environment determines best actions (⇒ desires)
- Incomplete information (⇒ beliefs)
- Dynamic world (⇒ intentions)

- Non-deterministic (⇒ beliefs)
- Action choices (⇒ intentions)
- Multiple objectives, possibly incompatible (⇒ desires)
- Environment determines best actions (⇒ desires)
- Incomplete information (⇒ beliefs)
- Dynamic world (⇒ intentions)

Can't just use decision theory

Decision Theory

- Choice nodes: system gets to choose
- Chance nodes: environment selects randomly

Decision Theory

- Choice nodes: system gets to choose
- Chance nodes: environment selects randomly

Deliberation Functions

- Maximin: aim for a best, worst case
- Expected utility: aim for a best expected case

Decision Theory

- Choice nodes: system gets to choose
- Chance nodes: environment selects randomly

Deliberation Functions

- Maximin: aim for a best, worst case
- Expected utility: aim for a best expected case

Example

Air-traffic Management

70–80 agents at a time

Air-traffic Management

70-80 agents at a time

- One agent per aircraft
- Sequencer
- Wind modeller
- Coordinator
- Trajectory checker

Air-traffic Management

70–80 agents at a time

- One agent per aircraft
- Sequencer
- Wind modeller
- Coordinator
- Trajectory checker

Keep schedule until complete or impossible

BDI

Beliefs: All possible wind velocities and trajectories

BDI

Beliefs: All possible wind velocities and trajectories

Desires: Pruned to only keep the right ETA

BDI

Beliefs: All possible wind velocities and trajectories

Desires: Pruned to only keep the right ETA

Intentions: Pruned further to keep only the best in terms of fuel consumption, etc.

Electric Elves: Human Org. Support

- Proxy agents for meeting scheduling
- Activities within an individual research project
- Meeting planning with participants outside the organization

Challenges

- Adjustable autonomy
- Reliable information access
- Capability matching
- Agent coordination
- Scaling up to continual, reliable usability

Adjustable autonomy motivated by CAP

- Adjustable autonomy motivated by CAP
- MDPs to choose to delay risky decisions

- Adjustable autonomy motivated by CAP
- MDPs to choose to delay risky decisions
- Capability characterization language
- Adaptive wrappers for info sources
- Data mining from publication records

- Adjustable autonomy motivated by CAP
- MDPs to choose to delay risky decisions
- Capability characterization language
- Adaptive wrappers for info sources
- Data mining from publication records
- STEAM to coordinate agents

- Adjustable autonomy motivated by CAP
- MDPs to choose to delay risky decisions
- Capability characterization language
- Adaptive wrappers for info sources
- Data mining from publication records
- STEAM to coordinate agents

Used continuously for several months

Question

Are we ready for free flight and automatic proxy agents?