CS378
Autonomous Multiagent Systems
Spring 2005

Prof: Peter Stone
TA: Mazda Ahmadi

Department of Computer Sciences
The University of Texas at Austin

Week 8b: Thursday, March 11th
Good Afternoon, Colleagues

Are there any questions?
Good Afternoon, Colleagues

Are there any questions?

- How do you choose cycle speed in simulations?
Good Afternoon, Colleagues

Are there any questions?

- How do you choose cycle speed in simulations?
- Granularity vs. lanes
 - How does performance go down with higher granularity?
- Why does perf. fluctuate with higher spawning rate?
Logistics

- Give yourself some time for the game theory readings
Logistics

- Give yourself some time for the game theory readings
- Start on the projects!
Intersection Management

- Kurt’s slides
Intersection Management

- Kurt’s slides
- What if a car breaks down in intersection?
Intersection Management

- Kurt’s slides
- What if a car breaks down in intersection?
- Why isn’t central agent a bottleneck?
Intersection Management

- Kurt’s slides
- What if a car breaks down in intersection?
- Why isn’t central agent a bottleneck?
- What if intersection never responds
Intersection Management

- Kurt’s slides
- What if a car breaks down in intersection?
- Why isn’t central agent a bottleneck?
- What if intersection never responds
- What about multiple intersections?
Intersection Management

- Kurt’s slides
- What if a car breaks down in intersection?
- Why isn’t central agent a bottleneck?
- What if intersection never responds
- What about multiple intersections?
- Recent developments:
 - Changing velocity in the intersection
 - Turning allowed
Intersection Management

- Kurt’s slides
- What if a car breaks down in intersection?
- Why isn’t central agent a bottleneck?
- What if intersection never responds?
- What about multiple intersections?
- Recent developments:
 - Changing velocity in the intersection
 - Turning allowed
- Next steps: looking for ML opportunities
Intersection Management

- Kurt’s slides
- What if a car breaks down in intersection?
- Why isn’t central agent a bottleneck?
- What if intersection never responds
- What about multiple intersections?
- Recent developments:
 - Changing velocity in the intersection
 - Turning allowed
- Next steps: looking for ML opportunities
- Class discussion: Chinmaya on changing lanes
Intersection Management

- Kurt’s slides
- What if a car breaks down in intersection?
- Why isn’t central agent a bottleneck?
- What if intersection never responds?
- What about multiple intersections?
- Recent developments:
 - Changing velocity in the intersection
 - Turning allowed
- Next steps: looking for ML opportunities
- Class discussion: Chinmay on changing lanes
- What about highway traffic?
Intersection Management

- Kurt’s slides
- What if a car breaks down in intersection?
- Why isn’t central agent a bottleneck?
- What if intersection never responds?
- What about multiple intersections?
- Recent developments:
 - Changing velocity in the intersection
 - Turning allowed
- Next steps: looking for ML opportunities
- Class discussion: Chinmay on changing lanes
- What about highway traffic?
- Any other applications?
Past years’ applications

- OASIS
- Archon — an early MAS
- Trafficopter — highway traffic planning
- AntNet — network routing using ant metaphor
 - Competitive results
- Elevator control — using RL
Archon — Cockburn and Jennings ’96

- Large, industrialized systems (e.g. electricity distribution)
- A general system (methodology)
 - many applications
- Clearly distinguish between:
 - social know-how (AL)
 - domain-level problem solving (IS)
- Built to combine legacy systems
Trafficopter — Moukas et al. ’98

- Intelligent highways without the infrastructure
- Oncoming cars report upstream traffic
- Cars equipped with PDAs, GPS, wireless transceivers
 - Cheap equipment
 - Cars easily equipped
 - Not needed on all cars
Data Transfer

- Cars query about specific map locations
- Messages propagated by other cars
- Some controls to keep data fresh:
 - Half-time decay function of traffic data
 - Requests die after number of hops, amount of time
 - Farther messages propagates first (hop minimizer)
 - Only 3 propagations per message
Results

- Feasability studies in simulation
- Studied percentage of queries answered as a function of number of cars equipped
- Also studied effect of data cache and hop minimizer
AntNet

- Network routing example
- Randomized algorithm (packets sent probabilistically)
- Travel to destination and back, leaving time-to-dest data at nodes
- Follow the “pheromones” probabilistically
RL for elevator control

- Modeling elevator traffic during lunch

- Huge state space
 - Which call buttons are pressed
 - Which car buttons are pressed
 - Times since buttons pressed

- Small action space
 - Move up/down (when at a floor)
 - Stop/continue (when moving)
 - Some action constraints
Function approximation

- Neural network to approximate Q

- 47 inputs: ("after considerable experimentation")
 - call buttons (18)
 - car location (16)
 - other car locations (10)
 - domain info: at highest-needed floor or longest-waiting passenger (2)
 - bias unit (1)
Two architectures

- Parallel: all elevators share the same network (homogeneous)
- Decentralized: each elevator has its own network (heterogeneous)

Results

- Both outperform many other standard algorithms
- Why not use it?