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Good Afternoon, Colleagues

Are there any questions?
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e Very fun job falk next Tuesday
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Bidding for Multiple ltems

utility
camera alone | S50
flash alone 10
both 100
neither 0

e \What's the value of the flash?

— Auctions are simulfaneous
— Auctions are independent (no combinatorial bids)

e c [10,50] — Depends on the price of the camera
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Spectrum licenses

e \Worth a lot

e But how much to whom?

e Used to be assigned

— took foo long

e Switched to lotteries

— oo random

— clear that lots of value given away

So decided to auction

Peter Stone



Goals of mechanism

e Efficient adllocation (assign to whom it’s worth the most)
e Promote deployment of new tfechnologies

e Prevent monopoly (or close)

e Getf some licenses to designated companies

e No politfical embarrassments
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Goals of mechanism

e Efficient adllocation (assign to whom it’s worth the most)

e Promote deployment of new tfechnologies

e Prevent monopoly (or close)

e Getf some licenses to designated companies

e No politfical embarrassments

Revenue an afterthought (buf important in end)

Peter Stone



Choices

e \Which basic auction format?

Peter Stone



Choices

e \Which basic auction format?

e Seguential or simultaneous auctions?

Peter Stone



Choices

e \Which basic auction format?
e Seguential or simultaneous auctions?

e Combinatorial bids allowed?

Peter Stone



Choices

e \Which basic auction format?
e Seguential or simultaneous auctions?
e Combinatorial bids allowed?

e How to encourage designated companies?

Peter Stone



Choices

e Which basic auction format?

e Seguential or simultaneous auctions?

e Combinatorial bids allowed?

e How to encourage designated companies?

e Up front payments or royalties?

Peter Stone



Choices

e Which basic auction format?

e Seguential or simultaneous auctions?

e Combinatorial bids allowed?

e How to encourage designated companies?
e Up front payments or royalties?

e Reserve prices?

Peter Stone



Choices

e \WWhich basic auction format?

e Seguential or simultaneous auctions?

e Combinatorial bids allowed?

e How to encourage designated companies?
e Up front payments or royalties?

e Reserve prices?

e How much information public?
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Problems from New Zealand and Australia

Second price, sealed bid

e High bidder’s willingness o pay is public
e NO reserve prices

e NO penalties for default, so many meaningless high ids

Any oversight in auction design can have harmful
repercussions, as bidders can be countfed on fo seek
ways fo ouffox the mechanism.
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License interactions

e Complementarities: good to be able to offer roaming
capabillities

e Substitutability: several licenses in the same region

e Need 1o be flexible to dallow bidders to create
aggregations

e Secondary market might allow for some corrections

— Likely o be thin
— High transaction costs

Peter Stone
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Limits of Theory

e |[dentify variables, but not relative magnitudes

— When there are conflicting effects, can’t tell which will
dominate

e [gnores fransaction costs of implementing policies

e May depend on unknown information
— e.g. bidder valuations

e Doesn’t scale fo complexity of spectrum auctions

Used laboratory experiments too

Peter Stone
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e Open increases information, reducing winner’s curse
— Leads to higher bids

o But...

— Risk aversion leads to higher bids in sealed bid auctions
— Sedled bid auctions deter colusion

e Decided former outweighed latter

e Went with announcing bids, but not the bidders

— Circumvented!
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Simultaneous vs. Sequential

e Sequential prevents backup strategies for aggregation

e Sequential also allows for budget strefching

e Simultaneous needs a stopping rule

— Closing one by one is effectively sequential
— Keeping all open until all close encourages sniping

e Stopping rule should:

— End auction quickly
— Close licenses almost simultaneously
— be simple and understandable

Went with acftivity rules

Peter Stone
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e Nafionwide bidding could decrease efficiency and
revenue
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Combinatorial Bids

e Nafionwide bidding could decrease efficiency and
revenue
e FuUll combinatorial bidding tfoo complex

— Winner defermination problem
— Active research ared

Peter Stone
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e Give them a discount

e Circumvented!

Peter Stone
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Royadlties vs. Up-front Payments

e Royalties decrease risk, increase bids

e Butf royalties discourage post-auction innovation

e Decided against

Peter Stone



Reserve Prices

e NOt necessary in such a competitive market

e Did include withdrawal penalties

Peter Stone
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Results

e Big successes
— Lofts of bidders
— Lots of revenue
e Also some problems

— Strategic Demand Reduction

e INncremental design changes

— New problems always arise
— Bidders indeed find ways to circumvent mechanisms

e Lessons to be learned via agent-based experiments
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FCC Spectrum Auction #35

e 422 licences in 195 markets (cities)

— 80 bidders spent S8 billion
— ran Dec 12 - Jan 26 2001
— licenceis a 10 or 15 mhz spectrum chunk

e RUN IN rounds
— bid on each licence you want each round
— simultaneous; break ties by arrival fime
— current winner and all bids are known

e Allowable bids: 1 to @ bid increments
— 1 bid incris 10% — 20% of current price

e Other complex rules
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Model
e Agent goals

— desire 0, 1, or 2 licences per market
— desired markets have unigque values
— subject fo budget constraint

Assumption: no inter-market value dependencies

o Utility is profit: >;(value — cost)

e Mmodeled 5 most important bidders

— ofhers served mainly to raise prices
— modeled as several small bidders
— lower valuations (/5% — pessimistic)

Departnient of Computer Sciences
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Bidding Strategies

e Considering self only
— Knapsack
— best self-only approach
e Strategic bidding (consider others)

— threats
— budget stretching
— Strategic Demand Reduction (SDR)

Explicit communication not allowed

Peter Stone



Randomized SDR

e Figure out allocations dynamically

— round 1. bid for everything you want
— first big bidder winning bid owns licence
— satisfaction = owned value / desired value

e Random = uneven adllocation

— get small share = incentive fo cheat
— fair: own satisfaction close to average
— If unlucky, take licences until fair

e SMmall bidders take licences from owners

— remember licence’s owner
— dllocate while small bidders active
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RSDR vs. Knapsack

Method | Agent | Profit (SM) | Ratio | Cost

0 980 (£170) | 1.00 | .82

] 660 (£85)| 1.00 | .82

Knapsack 2 830 (+91)| 1.00 | .84
3 170 (£20) | 1.00 | .84

4 560 (+96) | 1.00 | .86

0 1240 (£210) | 1.26 | .76

] 820 (£83) | 1.25 | .77

RSDR 2 1300 (£290) | 1.68 | .74
3 300 (+44)| 1.78 | .79

4 930 (£240) | 1.68 | .76

44% more profit; avg. ratio 1.51

Peter Stone



Robustness

e What if someone cheafs?
— cheat: defect back to knapsack
— ofhers stay out of its way = big win
e Solufion: Punishing RSDR (PRSDR)

— cheater takes your licence = take it back
— take it back first while still have money
— aggressively punitive: skips optimizers

Simplification; poinfing out cheaters by hand

Peter Stone



Robustness

Method Ratio | Cost
Knapsack 1.00 | .84
RSDR 1.51 76
RSDR Cheater | 1.63 | .76
RSDR Victim 1.22 | .79
PRSDR Cheater | 1.02 | .83
PRSDR Enforcer | 1.17 81

Peter Stone



Extensions

e Change small bidder valuations

— test robustness

— RSDR is optfimal for preserving profit
e Multiple cheaters

— current punishment too aggressive
— collapse back to knapsack instead

Peter Stone



Extentions

Method Ratio | Local Ratio | Cost
Mulfiple Cheater | 1.03 1.03 .84
Multiple Enforcer | 1.01 1.01 .83

50% Knapsack 1.70 1.00 /4
50% RSDR 3.42 2.02 D1
/5% Knapsack 1.00 1.00 .84
/5% RSDR 1.51 1.51 76
85% Knapsack 0.68 1.00 .89
85% RSDR 0.81 1.25 87

Peter Stone



Future Work

e RObustness enhancements

— petter punishment method

e More complex value functions

— Infer-market dependencies

e Automatic cheater detection
— partfial cheating vs. defection arms race
— smack back into compliance

e Generalization to other auctions

— more robust to tie-breaking procedure variations
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Summary

e Communication-free coordination
e ENnables much higher profits
e \Works even uncertain knowledge

e Real-world functionality relies on simple assumptions:
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Summary

e Communication-free coordination
e ENnables much higher profits
e \Works even uncertain knowledge

e Real-world functionality relies on simple assumptions:

— bidders want more profit
— bidders familiar with PRSDR and its benefits
— bidders willing to try it risk-free

Peter Stone



Trading Agent Competition

e Put forth as a benchmark problem for e-marketplaces
(Wellman, Wurman, et al., 2000)

e Autonomous agents act as travel agents
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Trading Agent Competition

e Put forth as a benchmark problem for e-marketplaces
(Wellman, Wurman, et al., 2000)
e Autonomous agents act as travel agents

— Game: 8 agents, 12 min.
— Agent: simulated travel agent with 8 clienfs
— Client: TACtown «— Tampa within 5-day period

e Auctions for flights, hotels, entertainment tickets

— Server maintains markets, sends prices to agents
— Agent sends bids to server over network

Peter Stone



28 Simultaneous Auctions

Flights: Inflight days 1-4, Outflight days 2-5 (8)

e Unlimited supply; prices tend fo increase; immediate
clear; no resale
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28 Simultaneous Auctions

Flights: Inflight days 1-4, Outflight days 2-5 (8)
e Unlimited supply; prices tfend fo increase; immediate
clear; no resale
Hotels: Tampa Towers/Shoreline Shanties days 1-4 (8)

e 16 rooms per auction; 16th-price ascending auction;
quote is ask price; no resale
e Random auction closes minutes 4 — 11

Entertainment: Wrestling/Museum/Park days 1-4 (12)

e Continuous double auction; inifial endowments; quote
IS bid-ask spread; resale allowed
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Client Preferences and Utility

Preferences: randomly generated per client

— |deal arrival, departure days
— Good Hotel Value
— Entertainment Values
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Client Preferences and Utility

Preferences: randomly generated per client

— |deal arrival, departure days
— Good Hotel Value
— Entertainment Values

Utility: 1000 (if valid) — travel penalty + hotel bonus
+ enterfainment bonus

Score: Sum of client utilities — expenditures

Peter Stone



Allocation

G = complete allocation of goods to clients
v(G) = ufility of G — cost of needed goods
G* = argmax v(G)
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Allocation

G = complete allocation of goods to clients
v(G) = ufility of G — cost of needed goods
G* = argmax v(G)

Given holdings and prices, find G*

e General allocation NP-complete

- Tractable in TAC: mixed-integer LP (ATTac-2000)
- Estimate v(G™) quickly with LP relaxation

Prices known = G* known = optimal bids known
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High-Level Strategy

e Learn model of expected hotel price distributions

e FOr each auction:

- Repeatedly sample price vector from distributions
- Bid avg marginal expected ufility: v(G?)— v(G))

e Bid for all goods — not just those In G~

Goal: analytically calculate optimal bids

Peter Stone
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Hotel Price Prediction

e Features:

— Current hotel and flight prices

— Current time in game

— Hotel closing tfimes

— Agents in the game (when known)
— Variatfions of the above

e Data:

— Hundreds of seeding round games
— Assumption: similar economy
— Features — actual prices

Peter Stone
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e YV = closing price — current price € R
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The

Learning Algorithm

e X = feature vector e R"”

e YV = closing price — current price € R

e Break Y info k ~ 50 cut points b; < --- < b,

e FOr

each b;, estimate probability Y > b;, given X

— Say X belongs to class C; if Y > b,
— k-class problem: each example in many classes
— Use BoosTexter (boosting (Schapire, 1990))

e Can convert fo estimated distributfion of V| X

New algorithm for conditional density estimation
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Hotel Expected Values

e Repeat until time bound, for each hotel:

1. Assume this hotel closes next
2. Sample prices from predicted price distributions
3. Given these prices compute Vg, V7, ... V3

— V; =v(G")if own exactly : of the hotel
— W<V <. <

e Value of ith copyisavg(V;, — V,_1)

Peter Stone
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Other Uses of Sampling

Flights: Cost/benefit analysis for postponing commitment

Cost: Price expected to rise over next n minutes
Benefit: More price info becomes known

e Compute expected marginal value of buying some
different flight

Entertainment: Bid more (ask less) than expected value of
having one more (fewer) ticket

Peter Stone



Finals

Team Avg. | Ad]. | Institution

ATlac 3622 | 4154 | AT&T

livingagents | 3670 | 4094 | Living Systems (Germ.)
whitebear 3513 | 3931 | Cornell

UrlaubOT1 3421 | 3909 | Penn State

Retfsina 3352 | 3812 | CMU

CaiserSose 3074 | 3766 | Essex (UK)
Southampton | 3253* | 3679 | Southampton (UK)
TacsMan 2859 | 3338 | Stanford

e AlTac improves over time
e livingagents is an open-loop strategy
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Confirolled Experiments
e Allac,: "' full-strength” agent based on boosting

o SimpleMean.: sample from empirical disfribution
(previously played games)

e CondifionalMean,: condifion on closing fime

o Allac, ., CondifionalMean,, s, SimpleMean,.:
predict expected value of the distribution

e CurrentPrice; predict no change

e FarlyBidder. motivated by TAC-01 entry livingagents
— Immediately bids high for G* (with SimpleMean,, .)
— Goes to sleep
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Stability

e / EarlyBidder's with 1 Allac

Agent Score Utility
Allac 2431 + 464 | 8909 + 264
FarlyBidder || —4880 + 337 | 9870 + 34
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Stability

e / EarlyBidder's with 1 Allac

Agent Score Utility
ATlac 2431 + 464 | 8909 + 264
FarlyBidder || —4880 + 337 | 9870 + 34
o / Allac’s with 1 EarlyBidder
Agent Score Utility
ATlac 2578 £ 25 | 9650 + 21
FarlyBidder || 2869 + 69 | 10079 + 55

EarlyBidder gets more utility; Allac pays less
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Results

e Phase |: Training from TAC-01 (seeding round, finals)
e Phase Il; Training from TAC-01, phases |, I
e Phase Il Training from phases | - I

Agent Relative Score
Phase | Phase lll
Allac,, 105.2 £49.5 (2) 166.2 +20.8 (1)
ATIac, 27.84+42.1 (3) | 122.3+19.4 (2)
EarlyBidder 140.3+38.6 (1) | 117.0+18.0 (3)
SimpleMean,, —28.8+45.1 (5) | —11.54+21.7 (4)
SimpleMean, —72.0+£475 (7) | —44.14+18.2 (5)
ConditionalMean,, 8.6+41.2 (4) | —60.1+19.7 (6)
CondifionalMean, | —147.5+35.6 (8) | —91.1+17.6 (7)
CurrentPrice —33.7+52.4 (6) | —198.8 +26.0 (8)
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Last-minute bidding (R,O, 2001)

— eBay: first-price, ascending auction

— Amazon: auction extended if bid in last 10 minutes

— eBay: bofs exist fo incrementally raise your bid to @
nMaximum

e Still people snipe. Why?

— There’s arisk that the bid might not make it

— However, common-value — bid conveys info

— Late-bidding can be seen as implicit collusion

— Or...,lazy, unaware, etc. (Amazon and eBay)

e FiINding: more lafte-bidding on eBay,

— even more on antiques rather than computers
Um Department of Computer Sciences
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Small design-difference matters
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Late Bidding as Best Response

e Good vs. incremental bidders
— They start bidding low, plan fo respond
— Doesn’t give them time o respond

e G0O0Od vs. other snipers
— Implicit collusion
— Both bid low, chance that one bid doesn’t get in

e Good in common-value case
— protects information

Overall, the analysis of multfiole bids supports the
hypothesis that last-minufe bidding arises af least
In part as a response by sophisticated bidders tfo
unsophisticated incremental bidding.
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