CS378
Autonomous Multiagent Systems
Spring 2005

Prof: Peter Stone
TA: Nate Kohl

Department or Computer Sciences
The University of Texas at Austin

Week 4b: Thursday, February 9th
Good Afternoon, Colleagues

Are there any questions?
Good Afternoon, Colleagues

Are there any questions?

- Scientific community? Good for domains other than Thm proving?
- Legacy systems — saved by agents?
- Maintaining a hierarchy like distributed systems / fault tolerance?
- Bayesian uncertainty
Logistics

- Programming assignment 4 - any questions?
Logistics

- Programming assignment 4 - any questions?
- Orchestra (as a MAS)
Bayes Rule

- You run a cancer clinic.
- 10% of people tested have cancer: $P(C) = .1$
- What are the chances a new patient has cancer?
Bayes Rule

- You run a cancer clinic.
- 10% of people tested have cancer: $P(C) = .1$
- What are the chances a new patient has cancer?
- You find out he smokes. Now what are the chances? $P(C|S)$
Bayes Rule

- You run a cancer clinic.
- 10% of people tested have cancer: \(P(C) = 0.1 \)
- What are the chances a new patient has cancer?
- You find out he smokes. Now what are the chances? \(P(C | S) \)
- Assume you have detailed information on your patients (people tested), but not others.
- What more information do you need?
Bayes Rule

- You run a cancer clinic.
- 10% of people tested have cancer: \(P(C) = 0.1 \)
- What are the chances a new patient has cancer?
- You find out he smokes. Now what are the chances?
 \(P(C|S) \)
- Assume you have detailed information on your patients (people tested), but not others.
- What more information do you need?

- 80% of those tested who have cancer smoke: \(P(S|C) = 0.8 \)
Bayes Rule

• You run a cancer clinic.
• 10% of people tested have cancer: $P(C) = 0.1$
• What are the chances a new patient has cancer?
• You find out he smokes. Now what are the chances? $P(C|S)$
• Assume you have detailed information on your patients (people tested), but not others.
• What more information do you need?

• 80% of those tested who have cancer smoke: $P(S|C) = 0.8$
• 50% of those tested smoke: $P(S) = 0.5$
Bayes Rule

- You run a cancer clinic.
- 10% of people tested have cancer: $P(C) = .1$
- What are the chances a new patient has cancer?
- You find out he smokes. Now what are the chances?
 $P(C|S)$
- Assume you have detailed information on your patients (people tested), but not others.
- What more information do you need?

- 80% of those tested who have cancer smoke: $P(S|C) = .8$
- 50% of those tested smoke: $P(S) = .5$

Bayes: $P(C|S) = \frac{P(C) \times P(S|C)}{P(S)}$
Some Definitions

- Distributed Computing:
Some Definitions

- **Distributed Computing**: Processors share data, but not control. Focus on low-level parallelization, synchronization.
Some Definitions

- **Distributed Computing**: Processors share data, but not control. Focus on low-level parallelization, synchronization.

- **Distributed AI**:

 [Image 40x33 to 271x61]
Some Definitions

- **Distributed Computing**: Processors share data, but not control. Focus on low-level parallelization, synchronization.

- **Distributed AI**: Control as well as data is distributed. Focus on problem solving, communication, and coordination.
Some Definitions

• **Distributed Computing**: Processors share data, but not control. Focus on low-level parallelization, synchronization.

• **Distributed AI**: Control as well as data is distributed. Focus on problem solving, communication, and coordination.

• **Distributed Problem Solving**:

Some Definitions

- **Distributed Computing**: Processors share data, but not control. Focus on low-level parallelization, synchronization.

- **Distributed AI**: Control as well as data is distributed. Focus on problem solving, communication, and coordination.

- **Distributed Problem Solving**: Task decomposition and/or solution synthesis.
Some Definitions

• **Distributed Computing**: Processors share data, but not control. Focus on low-level parallelization, synchronization.

• **Distributed AI**: Control as well as data is distributed. Focus on problem solving, communication, and coordination.

• **Distributed Problem Solving**: Task decomposition and/or solution synthesis.

• **Multiagent Systems**:

[Image of the University of Texas at Austin logo]

Peter Stone
Some Definitions

- **Distributed Computing**: Processors share data, but not control. Focus on low-level parallelization, synchronization.

- **Distributed AI**: Control as well as data is distributed. Focus on problem solving, communication, and coordination.

- **Distributed Problem Solving**: Task decomposition and/or solution synthesis.

- **Multiagent Systems**: Behavior coordination or behavior management.
Some Definitions

- **Distributed Computing**: Processors share data, but not control. Focus on low-level parallelization, synchronization.

- **Distributed AI**: Control as well as data is distributed. Focus on problem solving, communication, and coordination.

- **Distributed Problem Solving**: Task decomposition and/or solution synthesis.

- **Multiagent Systems**: Behavior coordination or behavior management.
 - No necessary guarantees about other agents.
 - Individual behaviors typically simple relative to interaction issues.
Multiagent Systems

- Study, behavior, construction of possibly preexisting autonomous agents that interact with each other.
 - incomplete information for agents
 - no global control
 - decentralized data
 - asynchronous computation
Why Multiagent Systems?

(7)
Why Multiagent Systems?

(7)

- Some domains require it. (Hospital scheduling)
- Interoperation of legacy systems (works?)
- Parallelism.
- Robustness.
- Scalability
- Simpler programming.

“Intelligence is deeply and inevitably coupled with interaction.” – Gerhard Weiss
Organizations

- Hierarchy:
Organizations

- **Hierarchy**: authority from above
Organizations

- **Hierarchy**: authority from above

- **Community of Experts**:
Organizations

- **Hierarchy**: authority from above
- **Community of Experts**: specialists, mutual adjustment
Organizations

- **Hierarchy**: authority from above
- **Community of Experts**: specialists, mutual adjustment
- **Market**:
Organizations

- **Hierarchy**: authority from above
- **Community of Experts**: specialists, mutual adjustment
- **Market**: bid for tasks and resources; contracts
Organizations

- **Hierarchy**: authority from above
- **Community of Experts**: specialists, mutual adjustment
- **Market**: bid for tasks and resources; contracts
- **Scientific community**:
Organizations

• **Hierarchy**: authority from above

• **Community of Experts**: specialists, mutual adjustment

• **Market**: bid for tasks and resources; contracts

• **Scientific community**: full solutions (perhaps with varying information) combined
Organizations

- **Hierarchy**: authority from above
- **Community of Experts**: specialists, mutual adjustment
- **Market**: bid for tasks and resources; contracts
- **Scientific community**: full solutions (perhaps with varying information) combined
 - Scientific community? Good for domains other than Thm proving?
 - Maintaining a hierarchy like distributed systems / fault tolerance?
Issues and Challenges

• How to break down and resynthesize the problem among agents
Issues and Challenges

- How to break down and resynthesize the problem among agents
- Communication/interaction protocols
Issues and Challenges

- How to break down and resynthesize the problem among agents
- Communication/interaction protocols
- Maintain coherence, stability: guarantees?
 - Coherence is a global property
Issues and Challenges

- How to break down and resynthesize the problem among agents

- Communication/interaction protocols

- Maintain coherence, stability: guarantees?
 - Coherence is a global property

- Representation by agents of each other and interactions
Issues and Challenges

• How to break down and resynthesize the problem among agents

• Communication/interaction protocols

• Maintain coherence, stability: guarantees?
 – Coherence is a global property

• Representation by agents of each other and interactions

• Reconciling different points of view
Issues and Challenges

- How to break down and resynthesize the problem among agents
- Communication/interaction protocols
- Maintain coherence, stability: guarantees?
 - Coherence is a global property
- Representation by agents of each other and interactions
- Reconciling different points of view
- Engineering
Dimensions and issues

- cooperative vs. competitive
- communication
- trust
- recursive modeling
- coalitions
- game theory
Dimensions and issues

- cooperative vs. competitive
- communication
- trust
- recursive modeling
- coalitions
- game theory

Convoy example
Conflicts, Resources

• Omniscience for one agent creates bottleneck
Conflicts, Resources

- Omniscience for one agent creates bottleneck
- Self-interested agents: each agent maximizes own local utility
Conflicts, Resources

- Omniscience for one agent creates bottleneck
- Self-interested agents: each agent maximizes own local utility
 - Good for global performance?
Conflicts, Resources

- Omniscience for one agent creates bottleneck
- Self-interested agents: each agent maximizes own local utility
 - Good for global performance? (invisible hand)
Conflicts, Resources

- Omniscience for one agent creates bottleneck

- Self-interested agents: each agent maximizes own local utility
 - Good for global performance? (invisible hand)
 - Pitfall: tragedy of the commons
Conflicts, Resources

- Omniscience for one agent creates bottleneck
- Self-interested agents: each agent maximizes own local utility
 - Good for global performance? (invisible hand)
 - Pitfall: tragedy of the commons
 - Pitfall: no stability
Conflicts, Resources

- Omniscience for one agent creates bottleneck

- Self-interested agents: each agent maximizes own local utility
 - Good for global performance? (invisible hand)
 - Pitfall: tragedy of the commons
 - Pitfall: no stability
 - Pitfall: lying
Conflicts, Resources

- Omniscience for one agent creates bottleneck

- Self-interested agents: each agent maximizes own local utility
 - Good for global performance? (invisible hand)
 - Pitfall: tragedy of the commons
 - Pitfall: no stability
 - Pitfall: lying

- Market-based methods/auctions
Conflicts, Resources

- Omniscience for one agent creates bottleneck
- Self-interested agents: each agent maximizes own local utility
 - Good for global performance? (invisible hand)
 - Pitfall: tragedy of the commons
 - Pitfall: no stability
 - Pitfall: lying
- Market-based methods/auctions
- Negotiation, game theory
Multiagent Planning

- Complex individual agents
- Teamwork modeling
 - Modeling of teammates and opponents
- Recent: emphasis on flexibility in dynamic environments
Communication

- Middle agents (brokers)
- Standard languages
- Ontologies

More next week
Individual Agents

• Purely reactive agents have disadvantages
 – Can’t react to nonlocal info or predict effects on global behavior
 – hard to engineer

• Hybrid approach better

• Hard to evaluate agent architecture against one another