Good Afternoon, Colleagues

Are there any questions?
Logistics

- Project proposal questions?
Logistics

- Project proposal questions?
- Next week’s readings posted, survey soon to be assigned
Logistics

- Project proposal questions?
- Next week’s readings posted, survey soon to be assigned
- Explore UT: Saturday 11–4:40
Logistics

- Project proposal questions?
- Next week’s readings posted, survey soon to be assigned
- Explore UT: Saturday 11–4:40
- New resources
 - Paper on pair programming
Motivation from real insects

- Ant colonies exhibit remarkably complex behaviors
 - Food gathering
 - Burial
 - Nest building
 - Reproduction
Motivation from real insects

- Ant colonies exhibit remarkably complex behaviors
 - Food gathering
 - Burial
 - Nest building
 - Reproduction

- Individual ants aren’t smart
 - The complexity is in the environment (Simon)
Motivation from real insects

- Ant colonies exhibit remarkably complex behaviors
 - Food gathering
 - Burial
 - Nest building
 - Reproduction

- Individual ants aren’t smart
 - The complexity is in the environment (Simon)
 - They’re easily fooled out of their element (Feynman)
Motivation from real insects

- Ant colonies exhibit remarkably complex behaviors
 - Food gathering
 - Burial
 - Nest building
 - Reproduction

- Individual ants aren’t smart
 - The complexity is in the environment (Simon)
 - They’re easily fooled out of their element (Feynman)

Model the ant, not the colony
Go to the Ant

- Complex system behavior from many simple agents
Go to the Ant

- Complex system behavior from many simple agents
- Complexity comes from interactions, the environment
Agent Definition

Agents tied to environment

- Agent = <State, Input, Output, Process>
Agent Definition

Agents tied to environment

- Agent = <State, Input, Output, Process>
- Environment = <State, Process>
Agent Definition

Agents tied to environment

- Agent = ⟨State, Input, Output, Process⟩
- Environment = ⟨State, Process⟩

Note: supports hierarchical agents
Examples from Nature

• Ants: path planning
• Ants: brood sorting
• Termites: nest building
• Wasps: task differentiation
• Birds and Fish: flocking
• Wolves: surrounding prey
Principles

• Try to avoid functional decomposition
Principles

• Try to avoid functional decomposition

• Simple agents (small, forgetful, local)
Principles

• Try to avoid functional decomposition
• Simple agents (small, forgetful, local)
• Decentralized control
Principles

- Try to avoid functional decomposition
- Simple agents (small, forgetful, local)
- Decentralized control
- System performance from interactions of many
Principles

- Try to avoid functional decomposition
- Simple agents (small, forgetful, local)
- Decentralized control
- System performance from interactions of many
- Diversity important: randomness, repulsion
Principles

- Try to avoid functional decomposition
- Simple agents (small, forgetful, local)
- Decentralized control
- System performance from interactions of many
- Diversity important: randomness, repulsion
- Embrace risk (expendability) and redundancy
Principles

• Try to avoid functional decomposition
• Simple agents (small, forgetful, local)
• Decentralized control
• System performance from interactions of many
• Diversity important: randomness, repulsion
• Embrace risk (expendability) and redundancy
• Agents should be able to share information
Principles

- Try to avoid functional decomposition
- Simple agents (small, forgetful, local)
- Decentralized control
- System performance from interactions of many
- Diversity important: randomness, repulsion
- Embrace risk (expendability) and redundancy
- Agents should be able to share information
- Mix planning with execution
Principles

- Try to avoid functional decomposition
- Simple agents (small, forgetful, local)
- Decentralized control
- System performance from interactions of many
- Diversity important: randomness, repulsion
- Embrace risk (expendability) and redundancy
- Agents should be able to share information
- Mix planning with execution
- Provide an “entropy leak”
Class Discussion

John Schneider on swarms vs. hierarchical agents