CS 393R

Lab Introduction

Todd Hester todd@cs.utexas.edu

Outline

- The Lab: ENS 19N
- Website
- Software: Tekkotsu
- Robots: Aibo ERS-7 M3
- Assignment 1
- Lab Rules

My information

- Office hours
 - Wednesday 11-noon
 - ENS 19N
- todd@cs.utexas.edu

Lab information

- The lab is in the basement of ENS

 Room 19N
- The lab has 9 workstations
- The server: luigi.csres.utexas.edu

 NIF+NFS server and wireless gateway
 Use other machines if possible
 Do not reboot!!
- Machine login
 - \circ Username: your last name
 - \circ Password: cs393r
 - Change your password! (type passwd)
- Door code!

Lab information

Lab security

- \circ Be aware when leaving anything unattended in the lab
- o Never leave the robots unattended!
- \circ Always lock up your robots when you leave
- \circ Do not give out the room code to anyone
- Let me know of the following issues:
 - \circ Wireless network latency
 - \circ Workstation unavailability
 - \circ Lack of supplies
 - \circ Hardware issues

Tekkotsu

- Assignments will use Tekkotsu
 - Version 4.0
 - o http://www.tekkotsu.org
 - A C++ framework for Aibo development (from CMU)
- Contains many built in features you will need:
 - \circ Color image segmentation
 - \circ Pre-programmed walks
- To get started, see webpage resource section for:
 Tutorial on getting setup and compiling a stick
 Tekkotsu Tutorial

Tekkotsu Architecture

- You will be writing Aibo behaviors in C++
- Behaviors
 - Receive events (sensor signals, buttons, images, etc)
 - Create motion commands (motor commands)
 - Can also create events (state transitions)
- Tekkotsu provides many high level events
 - \circ Color segmented images
 - Blob locations
- Tekkotsu provides many motion commands
 O Pre-programmed walks
- Some analogies:
 - Behavior:VisionObject Agent Sensor
 - Behavior:MotionControl Agent Effector

Tekkotsu Architecture

Tekkotsu Controller GUI

- Joystick control of walk and head movements
- View of camera and segmentd image
- Can start and stop behaviors
- Can interactively create new poses and motion files

e Control Control	ontroller (localhost)
0. Mode Switch 1. Background Behaviors 2. TekkotsuMon 3. Status Reports 4. File Access 5. Vision Pipeline 6. Shutdown? 7. Help	Send Input: Raw Cam Seg. Cam Sketch: C L W Scripts: Quality Video Smooth Video Head Remote Control Walk Remote Control
▲ Back Refresh	Add Edit
Stopped	Un-Stop

AIBO ERS-7 M3

- Multiple Sensors
 - \circ Vision
 - \circ Touch sensors
 - Accelerometers
 - \circ IR, etc
- Multiple Effectors
 - \odot 4 legs with 3 DOF each
 - \circ Head with 3 DOF
 - \circ Tail, LEDs
- 64 bit RISC processor (576 MHz) and 64 MB RAM
- Communication through wireless LAN card

Robots

- Each team locker contains:
 - One Aibo (with memory stick and battery)
 - \circ One charging cradle
 - One Aibo ball
 - You are responsible for returning all these items in working order!
- Each workstation will have a memstick writer
- 3 official robot soccer balls are stored in the lab
 O not remove!

Battery Management

- A battery will last up to 45 minutes depending on the Aibo's actions
 - \circ May only last 15 minutes when playing soccer
- Each Aibo has its own charger
 - \circ The Aibo sits on the charger and charges the battery
 - You can charge the Aibo while it is stored in your locker
- Each robot locker only has one key
 - Coordinate among your team members!

Assignment One Goals

- Establish contact between workstation and Aibo
- Demonstrate you can read the sensors and display them
- Make the Aibo move its head and walk
- Get started using a colored blob tracker on the camera image
- Write a couple of simple control programs
 - \circ Control the Aibo's gaze to track the ball
 - Walk towards a blue goal
- Hint: Take a look at the Tekkotsu Tutorial!

Assignment One

- Worth 1 point each:
 - Demonstrate the ability to read and display the changing values from the Aibo's sensors as useful data in your program
 - $\,\circ\,$ Same for camera image
 - Demonstrate the ability to detect and track a pink blob in the camera image with the head held still
 - Demonstrate that you can control sitting, standing, and headturning
 - Demonstrate that you can control walking: forward and turning
 - Demonstrate that your Aibo can walk in an arc: forward and turning at the same time
 - Demonstrate that your Aibo can move its head to keep the visible blob from a pink ball near the center of the image
 - Demonstrate that your Aibo can spot a colored patch in the distance and walk towards that patch until it fills half the camera image, and then stop.

Assignment One

- Some hints
 - Good blob identification will be an essential aspect of future assignments
 - Tekkotsu already provides a decent color map
 - However, the chairs sometimes register as pink
 - You can train your own color map
 - http://www-2.cs.cmu.
 - edu/~dst/Tekkotsu/Tutorial/colorsegment.shtml
 - \circ Look at the Tekkotsu tutorial!

Assignment One

- Everything runs on the robot
 No using the joystick controls
- You can switch behaviors between evaluations
- You can also communicate with the robot via touch sensors
- Evaluations are done in person
- You will turn in your code and memo

Lab Rules

- Lab environment
 - Food is okay. Mind your drinks near the electronics.
 - Cleanup any mess when you leave.
 - Throw away trash in the garbage cans in the hallway
- Security
 - Do not leave your robots unattended!
 - Robots can only be used in the lab. They are never allowed to be removed for any reason.
 - If no team members are present, the team's robot must be locked in its locker.
 - Never give your locker key to anyone outside your group.
 - $\circ\,$ Never tell the door combination to anybody outside of class.
 - Double check that your locker is secure if you are the last of your team to leave.
 - $\circ\,$ Make sure the lab door locks if you are last to leave.
 - Never give your robotics machine password to anyone.
 - People who are not enrolled in cs393r:
 - May not be in the lab unless a class member accompanies them.
 - Many not use any of the lab computers.
 - May not use any of the robots.

Administrative

Form a team and fill out a team form

 You will receive a locker key
 Lockers already contain
 Aibo/Charger/Ball/Battery/Memstick

Questions?