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Simple Autonomous Robot Diagram
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Perception Roadmap

• Sensors
• Overview
• Localization
• Obstacle Distance
• Vision

• Handling uncertainty, features
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Sensors Overview

• Why should a robotics engineer know about sensors?
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Sensors Overview

• Why should a robotics engineer know about sensors?
• They are the key technology for perceiving the environment
• Understanding the physical principle enables appropriate use

• Understanding the physical principle behind sensors enables us:
• To properly select the sensors for a given application
• To properly model the sensor system, e.g. resolution, bandwidth,

uncertainties
• To define the needs in collaboration with sensor system suppliers
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Classification of Sensors

• What:
• Proprioceptive sensors

• measure values internally to the system (robot),
•

• Exteroceptive sensors
• information from the robot’s environment
•

• How:
• Passive sensors

• energy coming for the environment
•

• Active sensors
• emit their proper energy and measure the reaction
• often better performance, but some influence on environment
•
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Classification of Sensors

• What:
• Proprioceptive sensors

• measure values internally to the system (robot),
• e.g. motor speed, wheel load, heading of the robot, battery status

• Exteroceptive sensors
• information from the robot’s environment
• distances to objects, intensity of the ambient light, sound amplitude

• How:
• Passive sensors

• energy coming for the environment
• temperature probes, microphones, web cameras

• Active sensors
• emit their proper energy and measure the reaction
• often better performance, but some influence on environment
• sonar, lidar
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Localization Sensors

LECTURE 2: Localization Sensing Localization Sensors
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Localization Sensors

Wheel sensors

• measure position or speed of the wheels or steering

• optical encoders are proprioceptive sensors
• thus the position estimation in relation to a fixed reference frame is

only valuable for short movements.

• typical resolutions: 64 - 2048 increments per revolution.

• quadrature encoders are often used for higher resolution and/or
directional information
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Localization Sensors

More encoders
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Localization Sensors

Encoder counts to distance

• Integrate wheel movements over time to get an estimate of the
position → odometry

• e.g., wheel circumference / encoder ticks per revolution = distance
traveled per encoder tick

• distance per tick / time between ticks = velocity

• For two wheeled, indoor robots, each wheel usually has its own
motor /encoder

• differential drive
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Localization Sensors

Calculating odometry for diff. drive robots

• For time interval I, each wheel has its own distance (+,-) traveled:
∆UR and ∆UL.

• The center point travels half the distance:
∆U = (∆UR + ∆UL)/2.

• The change in orientation is computed as
∆θ = (∆UR − ∆UL)/b.

• b is the wheelbase: distance between the wheels

• For the global, planar frame of reference, the robot’s location at
time t is calculated:

• θt = θt−1 + ∆θ
• xt = xt−1 + ∆U cos(θt−1 + ∆θ/2)
• yt = yt−1 + ∆U sin(θt−1 + ∆θ/2)
• Why cos and sin?
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Localization Sensors

Odometry is noisy!

Here a differential drive robot follows a 2m × 3m rectangle 6 times.
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Localization Sensors

Heading sensors

• Heading sensors can be proprioceptive () or exteroceptive ().

• Used to determine the robot’s orientation (yaw) and inclination
(pitch) and tipping (roll).
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Localization Sensors

Heading sensors

• Heading sensors can be proprioceptive (gyroscopes) or
exteroceptive (compasses).

• Used to determine the robot’s orientation (yaw) and inclination
(pitch) and tipping (roll).
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Localization Sensors

Compasses

• Used for navigation since before 2000 B.C., when Chinese
suspended a piece of naturally magnetite from a silk thread and
used it to guide a chariot over land.

• Exteroceptive
• Magnetic field of Earth
• absolute measure for orientation

• Large variety of solutions to measure the earth magnetic field
• mechanical magnetic compass
• direct measure of the magnetic field (Hall-effect, fluxgate sensors)

• Major drawbacks
• weakness of the earth field
• easily disturbed by magnetic objects or electrical sources
• slow to settle (mechanical, Hall-effect compasses)
• expensive (fluxgate (electromagnet) compasses)
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Localization Sensors

Hall-effect Overview

Need 2 hall-effect sensors to get 8 possible compass directions
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Localization Sensors

Gyroscopes Heading sensors, that keep the orientation to a fixed
frame

• precession-based measure for the heading of a mobile system

• Two categories, the mechanical and the optical gyroscopes

• Mechanical Gyroscopes: drift
due to friction

• Standard gyro (angle)
• Rate gyro (speed)

• Optical Gyroscopes: more
accurate, no mechanical parts

• Rate gyro (speed)
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Localization Sensors

Rate Gyroscopes

• Measures the rate of rotation in one dimension (e.g., heading)

• Angular velocity if proportional to precession
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Localization Sensors

Optical Gyroscopes First commercial use started only in the early
1980 when they where first installed in airplanes.

• angular speed (heading) sensors using two monochromic light (or
laser) beams from the same source.

• One is traveling in a fiber clockwise, the other counterclockwise
around a cylinder

• Laser beam traveling in direction opposite to the rotation
• slightly shorter path
• phase shift of the two beams is proportional to the angular velocity

of the cylinder
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Localization Sensors

Accelerometers Spring mounted masses whose displacement under
acceleration can be measured.

• Used to detect acceleration in a single dimension
• Based on Newtow’s law F = ma and the ideal spring-mass

relation F = kx .
• a = kx/m

• Usually, one accelerometer for each of 3 orthogonal axis is used
• Detects acceleration in pitch, roll, and yaw
• Integrated over time, can yield velocity and distance estimates in

3D space



Autonomous Vehicles P. Beeson (UTCS)

Lecture 2: Localization Sensing 45

Localization Sensors

External Beacons

• “Elegant” way to solve the localization problem in mobile robotics

• Beacons are signaling guiding devices with a precisely known
position

• Beacon base navigation is used since the humans started to
travel

• Natural beacons (landmarks) like stars, mountains or the sun
• Artificial beacons like lighthouses

Major drawback with the use of
beacons:

• Beacons require (costly)
changes in the environment

• Limit flexibility and adaptability
to changing environments



Autonomous Vehicles P. Beeson (UTCS)

Lecture 2: Localization Sensing 46

Localization Sensors

Beacon Examples

• Colored beacons used in
Robocup (passive)

• Beacon for power docking
(passive)

• Underwater beacons that
send sonar chirps (active)

• GPS (active)

• Wifi signals (active)
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Localization Sensors

Global Positioning System

• Developed for military use (started in 1973, completed in 1995)

• Recently it became accessible for commercial applications

• 24 satellites (includes three spares) orbiting the earth every 12
hours at a height of 20,190 km.

• Four satellites are located in each of six planes inclined 55
degrees with respect to the plane of the Earth’s equator

• Location of any GPS receiver is determined through a time of
flight measurement (using 4 or more satellites)

• Technical challenges:
• Time synchronization between the individual satellites and the

GPS receiver
• Real time update of the exact location of the satellites
• Precise measurement of the time of flight
• Interferences with other signals
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Localization Sensors

GPS Overview

• The basis of GPS is “trilateration” from satellites.

• A GPS receiver measures distance using the travel time of radio
signals.

• To measure travel time, GPS needs very accurate timing which it
achieves with some tricks

• Along with distance, you need to know exactly where the
satellites are in space.

• Correct for any delays the signal experiences as it travels through
the atmosphere
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Localization Sensors

Trilateration Details
Knowing the distance to 1 satellite means we could be anywhere on a
sphere.
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Localization Sensors

Trilateration Details
With two satellites, two spheres intersect giving us a circle of locations
that we could be located at.
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Localization Sensors

Trilateration Details

With a third circle, there are two points. One of the 2 points is usually
nonsensical (not near the surface of the Earth).
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Localization Sensors

Measuring Distance distance = velocity * time

• velocity = speed of light = 299,792.458 km/s

• For a satellite right above head d ≈ 20, 190km, so
t = 20190/299792.458 ≈ 0.067s

• The difference between the current receiver time and the time the
satellite sent the signal gives the distance.

• Clocks must be synchronized
• Timing must be precise, even 0.001 seconds of timing error

means 300 km of distance error.
• Satellites all have atomic clocks.
• Receivers do not (too expensive).
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Localization Sensors

Timing

• At very fast, specified intervals each satellite sends a unique
pseudo random code.

• Each code modules at 1 MHz and repeats every 1023 bits

• A receiver is also generating these pseudo random codes at
1MHz.
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Localization Sensors

Timing

• If the receiver assumes it generates the codes at the exact times
of the satellites, then calculating the phase shift with 3 satellites
will give a precise location (throwing away the bogus second
hypothesis).

• The range measurements with four satellites allows to identify the
correct position (x , y , z) and the clock correction ∆T .

• Comparing to a fourth satellite, there will be an error (because the
receiver most probably did not generate the codes at the exact
same time as the atomic clock run satellites).

• Since any offset between when the receiver creates codes and
when the satellites created their codes will affect all four
measurements, the receiver looks for a single correction factor
that it can subtract from its time that would cause them all to
intersect at a single point.

• Once thus occurs, the receiver has a precise position AND an
atomic accuracy clock.
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Localization Sensors

Satellite Locations

• Satellites are 20,190 km above the Earth for a reason.
• High orbits are very predictable (no atmospheric effects)

• The DoD monitors each satellite from base stations and uploads
corrections from the predicted orbit to each satellite.

• In turn, the satellite includes this info in its broadcast packet
(along with the atomic clock time, the pseudo random code, etc.)

• Receivers use the current and predicted orbits to more quickly
acquire satellites.
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Localization Sensors

GPS Drawbacks

• Trees, buildings, mountains, etc. can block a number of satellites
from view.

• Thus, GPS does not work in many cities with numerous large
buildings.

• Does not work indoors, underwater, in caves, in forests, etc.

• General resolution of civilian GPS is usually between 3-15 m.
• And that’s without normal noise problems.
• The ionosphere and troposphere can slow down and refract the

radio signals.
• Satellite clocks are very accurate, but still have some error.
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Localization Sensors

GPS Noise Various satellite and atmospheric issues create errors in
the GPS signals.
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Localization Sensors

GPS Noise When these occur, GPS receivers in the same area on
Earth will see the same delay in GPS signals.
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Localization Sensors

DGPS Differential GPS or “DGPS” can yield measurements good to a
couple of meters in moving applications and even better in stationary
situations.

• By having a stationary base station, that knows its precise GPS
coordinates, it can perform the GPS calculations backwards to
find the timing errors for each satellite.

• We have one receiver measure the timing errors and then provide
correction information to the other receivers (via radio signals)
that are roving around.

• Not necessarily free, like GPS.
• Subscription-based from OmniStar or similar (satellites; country

wide access)
• Free near some coast guard stations (radio towers)
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Localization Sensors

RTK navigation Real Time Kinematic navigation uses the high
frequency portion of the satellite signals for more accurate location.

• 1MHz pseudo random code means 300m wavelengths.

• Modern GPS receivers can sync their codes with the satellite
code within 1% error: 3 meters (theoretically)

• Military uses a second, encrypted signal whose code is at
10MHz: 30 cm accuracy.

• Though the code of civilian GPS is 1MHz, the frequency of the
carrier signal is 1575.42 MHz.

• Two nearby receivers determine their relative distances.
• 1575 MHz signals at the speed of light have wavelength of 19cm.
• By phase aligning its carrier signal with the carrier signal received

by another GPS, a GPS receiver can determine its relative
distance within centimeters.
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Localization Sensors

Marvin’s pose info Marvin has an Applanix POS-LV navigation system

• Integrates several sensors:
• IMU (3 gyros and 3

accelerometers)
• quadrature encoder on 1

wheel
• D-GPS
• RTK-based solutions

during GPS outages
• Information integrated with

a Kalman filter (discussed
later)

• Approximate cost: $60,000

• Applanix gives:
• Absolute locations

• latitude & longitude
(easily converted to x,y)

• altitude (above sea
level)

• Orientations
• heading/yaw (absolute)
• roll
• pitch

• Speeds
• forward/backward
• sideways
• up/down
• turning, pitching, rolling
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LECTURE 3: Distance Sensing
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Perception Roadmap

• Sensors
• Overview
• Localization
• Obstacle Distance
• Vision

• Handling uncertainty, features
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Distance Sensors

Time of Flight Range Sensors

• Long range distance measurement devices
• Active measurement

• Ultrasonic sensors as well as laser range sensors make use of
propagation speed of sound or electromagnetic waves
respectively.

• The traveled distance of a sound or electromagnetic wave is
given by d = c · t .

• d = distance traveled (usually round-trip)
• c = speed of wave propagation
• t = time of flight
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Distance Sensors

• Propagation speed of sound: 0.3 m/ms

• Propagation speed of of electromagnetic signals: 0.3 m/ns,
• one million times faster.

• 3 meters
• is 10 ms for an ultrasonic system
• only 10 ns for a laser range sensor
• time of flight with electromagnetic signals is not an easy task
• laser range sensors expensive and delicate

• The quality of time of flight range sensors mainly depends on:
• Uncertainties about the exact time of arrival of the reflected signal
• Inaccuracies in the time of fight measure (laser range sensors)
• Opening angle of transmitted beam (especially ultrasonic range

sensors)
• Interaction with the target (surface, specular reflections)
• Variation of propagation speed (sound)
• Speed of mobile robot and target (if not at standing still)
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Distance Sensors

Ultrasonic Sensors

• Transmit a packet of (ultrasonic) pressure waves

• Distance d of the echoing object can be calculated based on the
propagation speed of sound c and the time of flight t : d = c · t/2

• The speed of sound in 68◦ F air is about 343 m/s.
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Distance Sensors

Ultrasonic Sensors
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Distance Sensors

Ultrasonic Sensors
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Distance Sensors

Ultrasonic Sensors
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Distance Sensors

Ultrasonic Sensors

• Benefits:
• Inexpensive

• Drawbacks:
• Specular Reflections
• Close (< 6 cm)/Far (> 3 m) objects are usually invisible

• Close: ignores self-echos
• Far: Amplitude degrades as per inverse square law

• Certain objects (foam, fur, etc.) absorb sound
• Speed of sound changes with altitude, humidity, etc.
• Slow operating speed:

• Sensing 3 meters away takes about 20 ms (50 Hz)
• If we have 20 nearby sonars, they must fire sequentially
• This means each one can fire about every 400 ms (2.5 Hz)
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Distance Sensors

Laser Rangefinders

• By using electromagnetic laser beams instead of sound, we can
get significant improvements in distance measurements.

• Lidar (light detection and ranging)

• Light reflects isotropically (in all directions) from surfaces having
roughness greater than the light wavelength.

• Light used in lidars is often around 824 nm (near-infrared)
• All but the most shiny surfaces will be diffuse reflectors
• Some light always reflects directly back to the transmission point

• Generally the phase shift from modulated light is measured, not
time of flight directly

• Speed of light is too fast.
• Would need clocks capable of resolving picoseconds (one trillionth

of a second).
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Distance Sensors

Distance through phase shift

D′ = L + 2D
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Distance Sensors

Distance through phase shift

For amplitude modulated light:

• c = f · λ, where f is the modulating frequency and λ the
modulated wavelength.

• L + 2D = L + θ

2π
λ; D = θ

4π
λ

• Suppose f = 5 MHz, then λ = 60 m.
• A target at range of 5 m, would have same phase shift as a target

at 65 m.
• Thus many lasers have maximum ranges of 60-120 m.
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Distance Sensors

Lidar specifics

• Confidence in the range (phase/time estimate) is inversely
proportional to the square of the received (modulated) signal
amplitude.

• Hence dark, distant objects will not produce such good range
estimated as closer brighter objects.

• Black velvet absorbs most light
• Returned intensities may be useful

• Lidars cannot see glass (invisible) or mirrors (see reflected
distances).

• Lidars can be dazzled by the sun

• Modern lidars with 80 m distance have about ±1 cm of error

• Usually 1 distance measurement every .5 or 1◦

• Usually give results at around 10Hz

• More expensive than sonar (planar units: $2000-$6000)



Autonomous Vehicles P. Beeson (UTCS)

Lecture 3: Distance Sensing 71

Distance Sensors

Specific Lidars
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Distance Sensors

Lidar Returns

2D



Autonomous Vehicles P. Beeson (UTCS)

Lecture 3: Distance Sensing 72

Distance Sensors

Lidar Returns

2D to 3D
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Distance Sensors

Lidar Returns

3D from 2D device mounted on its side on a spinning platform
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Distance Sensors

Real-time 3D ranging
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Distance Sensors

Velodyne HDL

• Created by a team from the 2005 Grand Challenge

• Most teams at the 2007 NQE had a Velodyne, but probably ¡ 100
exist

• Older firmware buggy
• Mostly works well these days

• 1,000,000 3D ranges a second; 100,000 at 10Hz

• Angled from from +2◦ to −24◦.

• Ranges: Theoretical: 120 m; Practical: 50 m

• Accuracy: Theoretical <2 cm; Practical: 10cm

• Intensities: May be useful, but currently unused by ART

• Cost: Around $60,000
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Distance Sensors

Velodyne details

• Groups of lasers fire simultaneously as the unit spins
• Horizontal offset of laser is added to the heading of the cylinder

when the reading was taken.
• Laser returns have no fixed angular offsets with respect to

straight-ahead
• Vertical angle is fixed

• Data transmitted via UDP packets over Ethernet wire
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Distance Sensors

Velodyne Returns

3D
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Distance Sensors

Velodyne Returns

3D



Autonomous Vehicles P. Beeson (UTCS)

Lecture 3: Distance Sensing 76

Distance Sensors

Velodyne Returns

3D to 2D
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Distance Sensors

1D Optical Triangulation

• Instead of laser phase being examined, the position of the laser
after it reflects and passes through a lens in measured.

• Position from middle of lens x is inversely proportional to distance
D.

• Usually works from 8 cm to 2 m.

• Inexpensive: $15 for a 80 cm 1D sensor
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Distance Sensors

2D Optical Triangulation

• Same principle as 1D approach but with a line (2D) or pattern
(3D) instead of a beam of light.

• 2D/3D approach is called structured light

• Surpassed by modern lidar units

• Still studied in vision research
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Distance Sensors

Radar

• Radar is very much like sonar, but uses electromagnetic radio
waves (e.g., microwaves)

• Can see through many surfaces (e.g., fog, dust, but also certain
walls)

• Different surfaces changes the waves in predictable ways

• Many of the same problems as sonar
• specular reflection
• large footprint

• Usually have a range of about 150 m, but only work at around 2
Hz

• Accurate to within 1 km/hr from 0 to 160 km/hr

• Relatively expensive for robotics applications
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Distance Sensors

Doppler Effect

• Radar and Sonar devices that can measure the speed of objects
(not just distance)

• The frequency of waves from a stationary transmitter is lower
than when the transmitter moves toward the receiver.

• And higher than when it moves away from the receiver.
• This is why an ambulance sounds higher pitched (higher

frequency) moving towards you than when moving away.

• v = ∆f ·c
2ft cos θ

• ∆f = frequency shift between transmitted and received wave;
ft − fr

• θ = relative angle in direction of motion and beam axis
• Positive v is velocity away from source
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Distance Sensors

Marvin’s ranging info

• 2 SICK-brand lidars
• 180◦ f.o.v.
• 80 meter range
• 1cm accuracy
• 1 on front bumper

• used for short range sensing
• car pitching can see ground further than about 8 m.

• 1 on rear bumper

• 1 Velodyne HDL
• used for 8m to 50 m obstacle detection
• mostly just senses ground

• Multiple SICK lidars in storage
• Intensities can detect road stripes


