Basic Concepts in Control

393R: Autonomous Robots Peter Stone

Slides Courtesy of Benjamin Kuipers

Good Afternoon Colleagues

• Are there any questions?

Logistics

- Reading responses
- Next week's readings due Monday night
 - Braitenberg vehicles
 - Forward/inverse kinematics
 - Aibo joint modeling
- Next class: lab intro (start here)

Controlling a Simple System

- Consider a simple system: $\dot{x} = F(x, u)$
 - Scalar variables x and u, not vectors \mathbf{x} and \mathbf{u} .
 - Assume x is observable: y = G(x) = x
 - Assume effect of motor command *u*:

 $\frac{\partial F}{\partial u} > 0$

- The setpoint x_{set} is the desired value. - The controller responds to error: $e = x - x_{set}$
- The goal is to set u to reach e = 0.

The intuition behind control

- Use action *u* to push back toward error *e* = 0
 error *e* depends on state *x* (via sensors *y*)
- What does pushing back do?
 - Depends on the structure of the system
 - Velocity versus acceleration control
- How much should we push back?
 - What does the magnitude of *u* depend on?

Car on a slope example

Velocity or acceleration control?

- If error reflects **x**, does **u** affect **x**' or **x**'' ?
- Velocity control: $\mathbf{u} \rightarrow \mathbf{x}'$ (value fills tank) - let $\mathbf{x} = (x)$ $\dot{\mathbf{x}} = (\dot{x}) = F(\mathbf{x}, \mathbf{u}) = (u)$
- Acceleration control: $\mathbf{u} \rightarrow \mathbf{x}''$ (rocket)

$$- \operatorname{let} \mathbf{x} = (x \ v)^{T}$$
$$\dot{\mathbf{x}} = \begin{pmatrix} \dot{x} \\ \dot{v} \end{pmatrix} = F(\mathbf{x}, \mathbf{u}) = \begin{pmatrix} v \\ u \end{pmatrix}$$
$$\dot{v} = \ddot{x} = u$$

The Bang-Bang Controller

Push back, against the *direction* of the error
 – with constant action u

• Error is
$$e = x - x_{set}$$

 $e < 0 \implies u \coloneqq on \implies \dot{x} = F(x, on) > 0$
 $e > 0 \implies u \coloneqq off \implies \dot{x} = F(x, off) < 0$

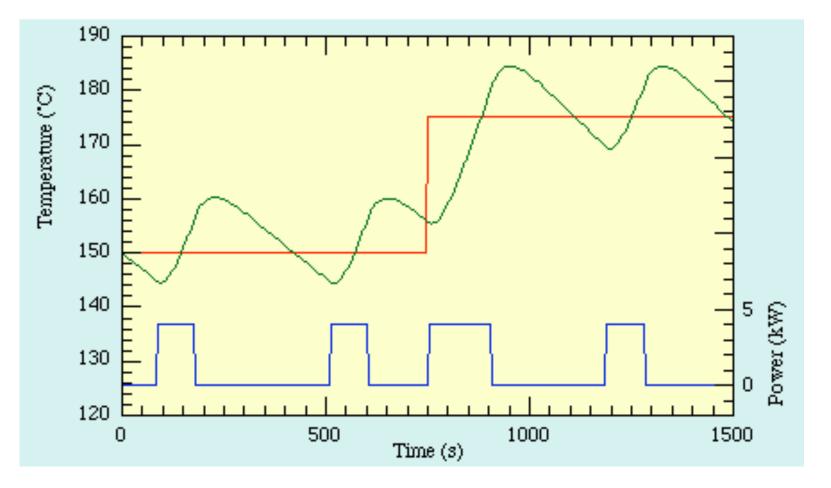
• To prevent chatter around e = 0,

$$e < -\varepsilon \implies u \coloneqq on$$

 $e > +\varepsilon \implies u \coloneqq off$

• Household thermostat. Not very subtle.

Bang-Bang Control in Action



- Optimal for reaching the setpoint
- Not very good for staying near it

Hysteresis

- Does a thermostat work exactly that way?
 Car demonstration
- Why not?
- How can you prevent such frequent motor action?
- Aibo turning to ball example

Proportional Control

• Push back, *proportional* to the error.

$$u = -ke + u_b$$

- set u_b so that $\dot{x} = F(x_{set}, u_b) = 0$

• For a linear system, we get exponential convergence.

$$x(t) = Ce^{-\alpha t} + x_{set}$$

• The controller gain *k* determines how quickly the system responds to error.

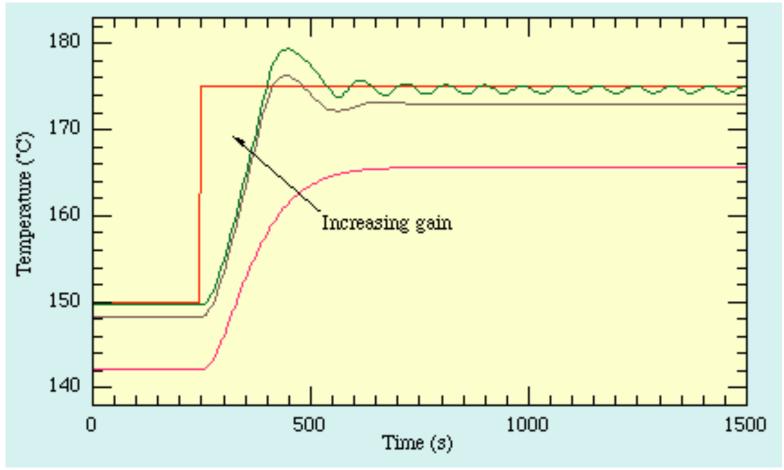
Velocity Control

- You want to drive your car at velocity $v_{set.}$
- You issue the motor command $u = pos_{accel}$
- You observe velocity v_{obs} .
- Define a first-order controller:

$$u = -k(v_{obs} - v_{set}) + u_b$$

-k is the controller gain.

Proportional Control in Action



- Increasing gain approaches setpoint faster
- Can leads to overshoot, and even instability
- Steady-state offset

Steady-State Offset

- Suppose we have continuing disturbances: $\dot{x} = F(x, u) + d$
- The P-controller cannot stabilize at *e* = 0.
 Why not?

Steady-State Offset

- Suppose we have continuing disturbances: $\dot{x} = F(x, u) + d$
- The P-controller cannot stabilize at e = 0. - if u_b is defined so $F(x_{set}, u_b) = 0$ - then $F(x_{set}, u_b) + d \neq 0$, so the system changes
- Must adapt u_b to different disturbances d.

Adaptive Control

- Sometimes one controller isn't enough.
- We need controllers at different time scales. $u = -k_P e + u_b$ $\dot{u}_b = -k_I e$ where $k_I << k_P$
- This can eliminate steady-state offset.
 Why?

Adaptive Control

- Sometimes one controller isn't enough.
- We need controllers at different time scales. $u = -k_P e + u_b$ $\dot{u}_b = -k_I e$ where $k_I << k_P$
- This can eliminate steady-state offset.
 - Because the slower controller adapts u_b .

Integral Control

- The adaptive controller $\dot{u}_b = -k_T e$ ans $u_b(t) = -k_I \int_0^t e \, dt + u_b$
- Therefore

$$u(t) = -k_P e(t) - k_I \int^t e dt + u_b$$

• The Proportional-Integral (PI) Controller.

Nonlinear P-control

- Generalize proportional control to $u = -f(e) + u_b$ where $f \in M_0^+$
- Nonlinear control laws have advantages
 - -f has vertical asymptote: bounded error e
 - -f has horizontal asymptote: bounded effort u
 - Possible to converge in finite time.
 - Nonlinearity allows more kinds of composition.

Stopping Controller

- Desired stopping point: x=0.
 - Current position: x

- Distance to obstacle: $d = |x| + \varepsilon$

• Simple P-controller: $v = \dot{x} = -f(x)$

• Finite stopping time for $f(x) = k\sqrt{|x|} \operatorname{sgn}(x)$

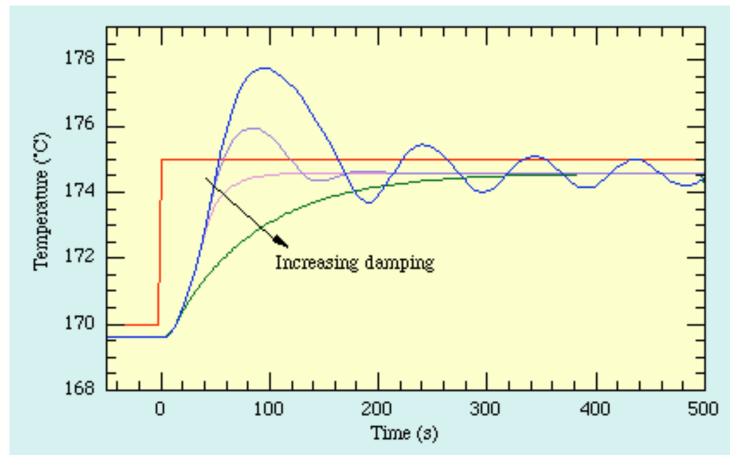
Derivative Control

- Damping friction is a force opposing motion, proportional to velocity.
- Try to prevent overshoot by damping controller response.

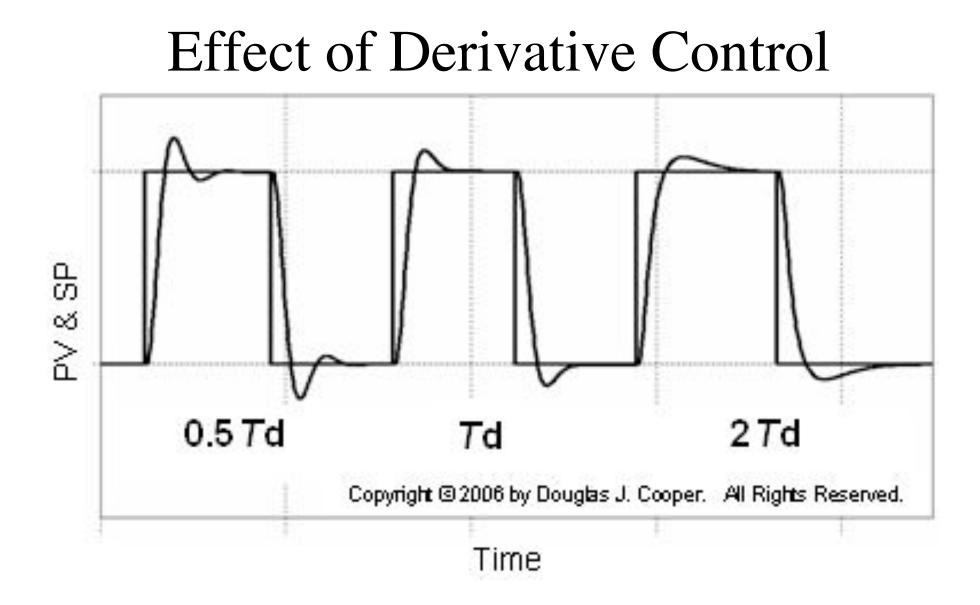
$$u = -k_P e - k_D \dot{e}$$

• Estimating a derivative from measurements is fragile, and amplifies noise.

Derivative Control in Action

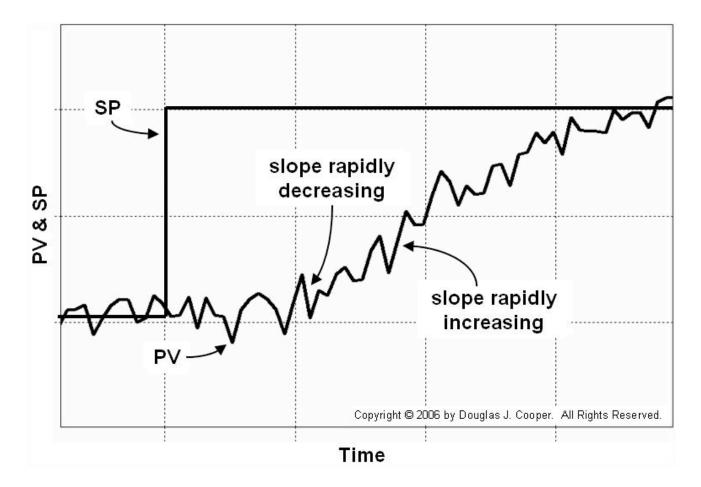


- Damping fights oscillation and overshoot
- But it's vulnerable to noise



– Different amounts of damping (without noise)

Derivatives Amplify Noise



This is a problem if control output (CO) depends on slope (with a high gain).

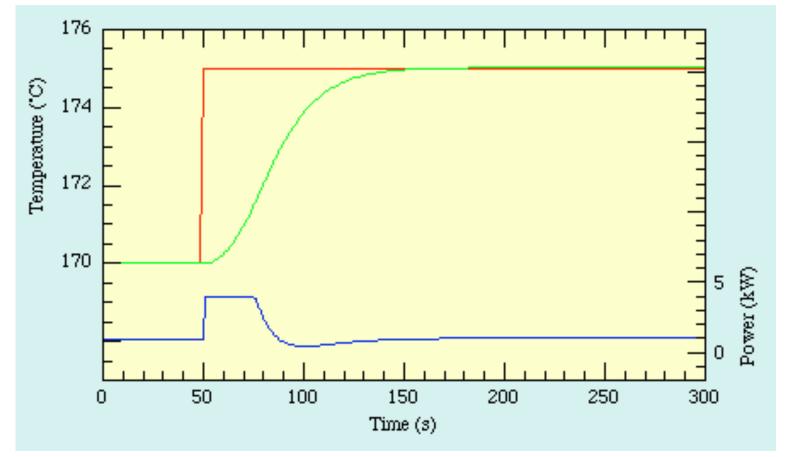
The PID Controller

• A weighted combination of Proportional, Integral, and Derivative terms.

$$u(t) = -k_{P} e(t) - k_{I} \int_{0}^{t} e \, dt - k_{D} \dot{e}(t)$$

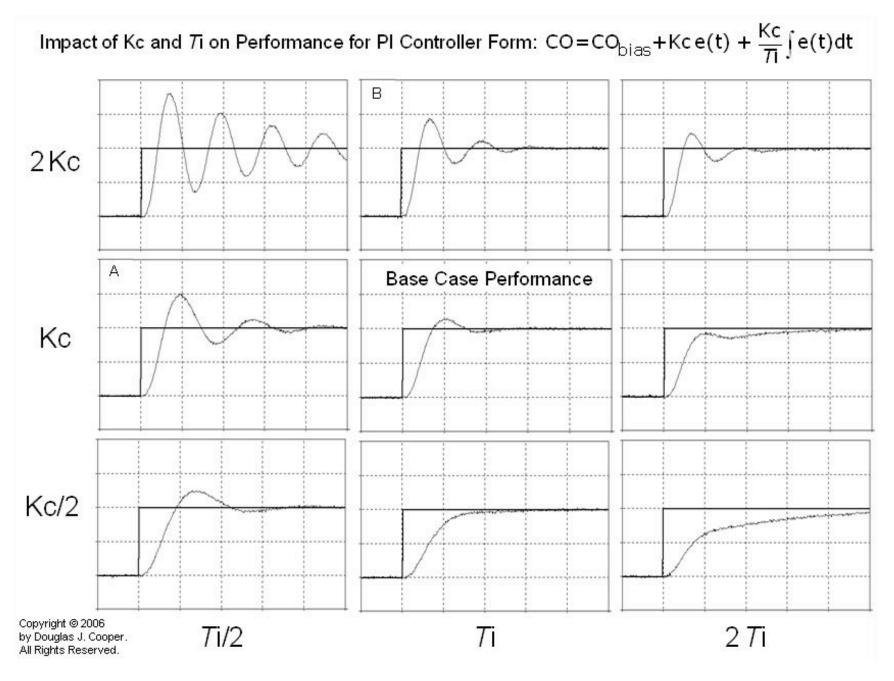
- The PID controller is the workhorse of the control industry. Tuning is non-trivial.
 - Next lecture includes some tuning methods.

PID Control in Action



- But, good behavior depends on good tuning!
- Aibo joints use PID control

Exploring PI Control Tuning



Habituation

- Integral control adapts the bias term u_b .
- Habituation adapts the setpoint x_{set} .
 - It prevents situations where too much control action would be dangerous.
- Both adaptations reduce steady-state error.

$$u = -k_P e + u_b$$

$$\dot{x}_{set} = +k_h e \text{ where } k_h << k_P$$

Types of Controllers

- Open-loop control
 - No sensing

• Feedback control (closed-loop)

- Sense error, determine control response.
- Feedforward control (closed-loop)
 - Sense disturbance, predict resulting error, respond to predicted error before it happens.

• Model-predictive control (closed-loop)

- Plan trajectory to reach goal.
- Take first step.
- Repeat.

Design open and closed-loop controllers for me to get out of the room.

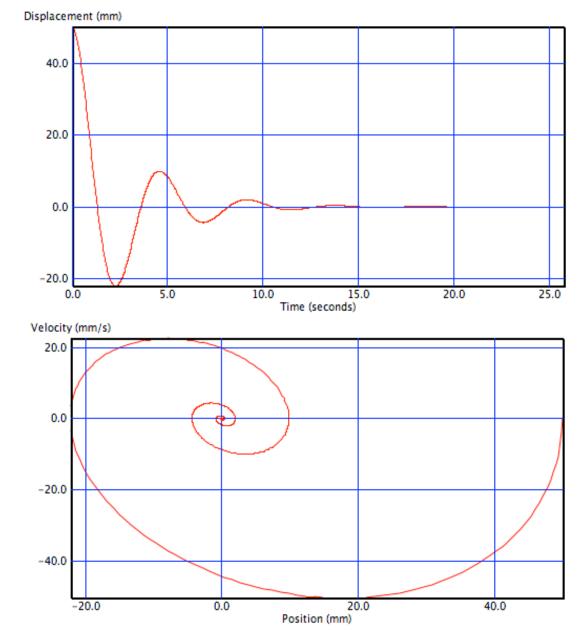
Dynamical Systems

- A *dynamical system* changes continuously (almost always) according to $\dot{\mathbf{x}} = F(\mathbf{x})$ where $\mathbf{x} \in \Re^n$
- A *controller* is defined to change the coupled robot and environment into a desired dynamical system.

 $\dot{\mathbf{x}} = F(\mathbf{x}, \mathbf{u})$ $\dot{\mathbf{x}} = F(\mathbf{x}, H_i(G(\mathbf{x})))$ $\mathbf{y} = G(\mathbf{x})$ $\dot{\mathbf{u}} = H_i(\mathbf{y})$ $\dot{\mathbf{x}} = \Phi(\mathbf{x})$

Two views of dynamic behavior

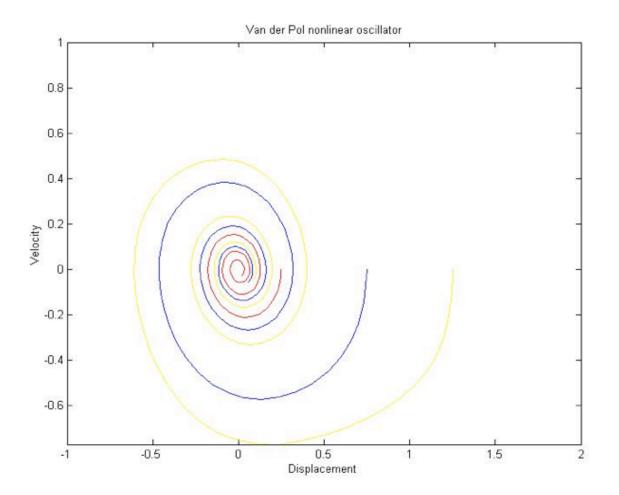
• Time plot (t,x)



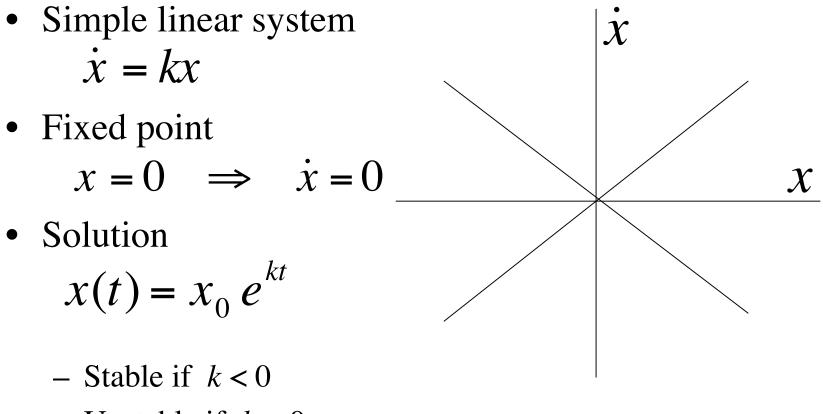
• Phase portrait (*x*,*v*)

Phase Portrait: (x,v) space

- Shows the trajectory (x(t),v(t)) of the system
 - Stable attractor here



In One Dimension



- Unstable if k > 0

In Two Dimensions

- Often, we have position and velocity: $\mathbf{x} = (x, v)^T$ where $v = \dot{x}$
- If we model actions as forces, which cause acceleration, then we get:

$$\dot{\mathbf{x}} = \begin{pmatrix} \dot{x} \\ \dot{v} \end{pmatrix} = \begin{pmatrix} \dot{x} \\ \ddot{x} \end{pmatrix} = \begin{pmatrix} v \\ forces \end{pmatrix}$$

The Damped Spring

- The spring is defined by Hooke's Law: $F = ma = m\ddot{x} = -k_1x$
- Include damping friction

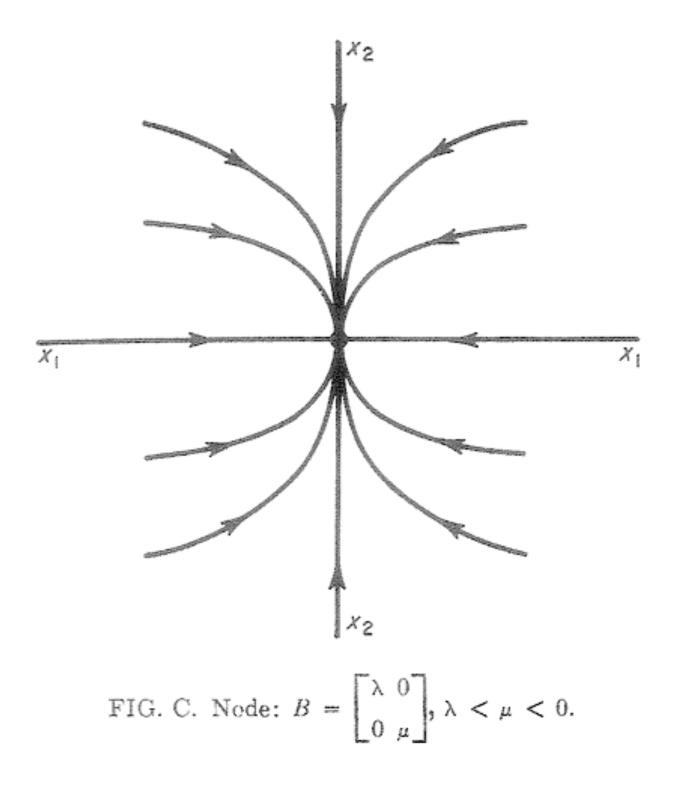
$$m\ddot{x} = -k_1 x - k_2 \dot{x}$$

• Rearrange and redefine constants

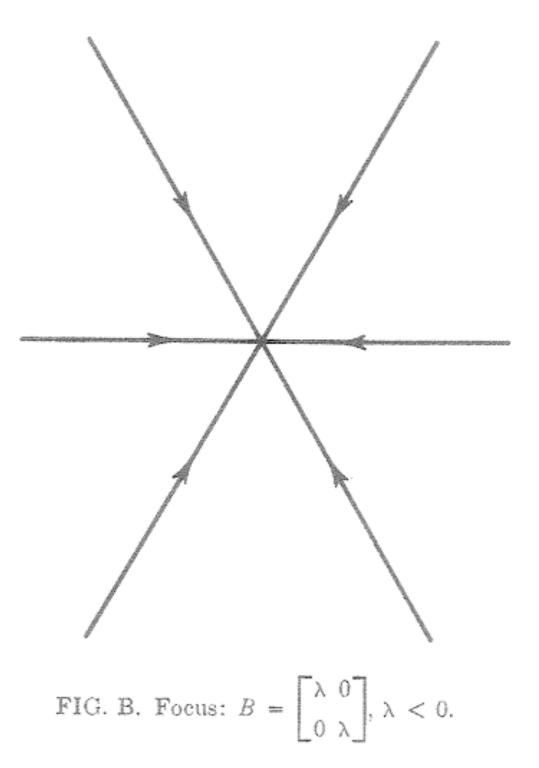
$$\ddot{x} + b\dot{x} + cx = 0$$

$$\dot{\mathbf{x}} = \begin{pmatrix} \dot{x} \\ \dot{v} \end{pmatrix} = \begin{pmatrix} \dot{x} \\ \ddot{x} \end{pmatrix} = \begin{pmatrix} v \\ -b\dot{x} - cx \end{pmatrix}$$

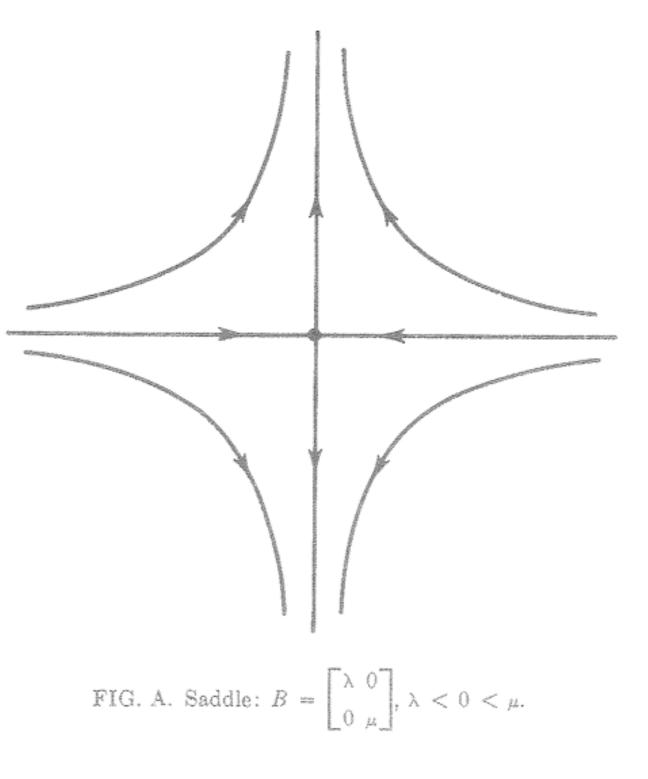
Node Behavior



Focus Behavior



Saddle Behavior



Spiral Behavior

(stable attractor)

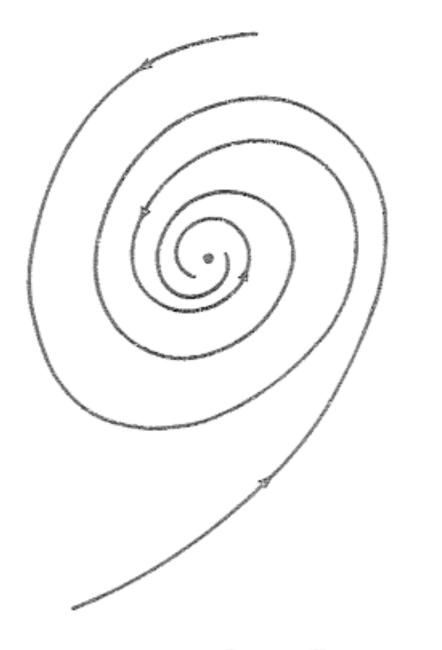


FIG. E. Spiral sink:
$$B = \begin{bmatrix} a & -b \\ b & a \end{bmatrix}$$
, $b > 0 > a$.

Center Behavior

(undamped oscillator)

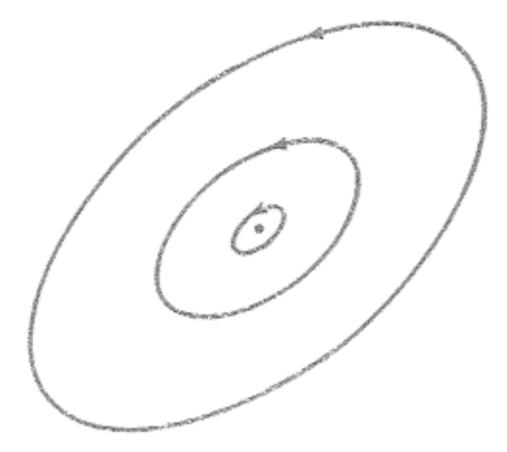
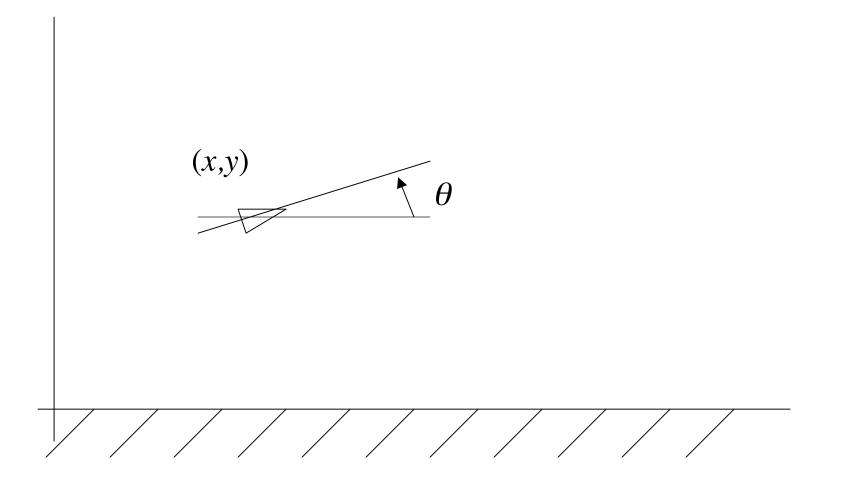


FIG. F. Center:
$$B = \begin{bmatrix} 0 & -b \\ b & 0 \end{bmatrix}, b > 0.$$



• Our robot model:

$$\dot{\mathbf{x}} = \begin{pmatrix} \dot{x} \\ \dot{y} \\ \dot{\theta} \end{pmatrix} = F(\mathbf{x}, \mathbf{u}) = \begin{pmatrix} v \cos \theta \\ v \sin \theta \\ \omega \end{pmatrix}$$

 $\mathbf{u} = (v \ \omega)^{\mathrm{T}} \qquad \mathbf{y} = (y \ \theta)^{\mathrm{T}} \qquad \theta \approx 0.$

• We set the control law $\mathbf{u} = (v \ \omega)^{\mathrm{T}} = H_i(\mathbf{y})$

- Assume constant forward velocity $v = v_0$ – approximately parallel to the wall: $\theta \approx 0$.
- Desired distance from wall defines error: $e = y - y_{set}$ so $\dot{e} = \dot{y}$ and $\ddot{e} = \ddot{y}$
- We set the control law $\mathbf{u} = (v \ \omega)^{\mathrm{T}} = H_i(\mathbf{y})$ – We want *e* to act like a "damped spring" $\ddot{e} + k_1 \dot{e} + k_2 e = 0$

- We want a damped spring: $\ddot{e} + k_1 \dot{e} + k_2 e = 0$
- For small values of θ

$$\dot{e} = \dot{y} = v \sin\theta \approx v\theta$$
$$\ddot{e} = \ddot{y} = v \cos\theta \dot{\theta} \approx v\omega$$

• Substitute, and assume $v=v_0$ is constant.

$$v_0 \omega + k_1 v_0 \theta + k_2 e = 0$$

• Solve for ω

- To get the damped spring $\ddot{e} + k_1 \dot{e} + k_2 e = 0$
- We get the constraint

$$v_0 \omega + k_1 v_0 \theta + k_2 e = 0$$

• Solve for ω . Plug into **u**.

$$\mathbf{u} = \begin{pmatrix} v \\ \omega \end{pmatrix} = \begin{pmatrix} v_0 \\ -k_1\theta - \frac{k_2}{v_0}e \end{pmatrix} = H_i(e,\theta)$$

– This makes the wall-follower a **PD** controller.

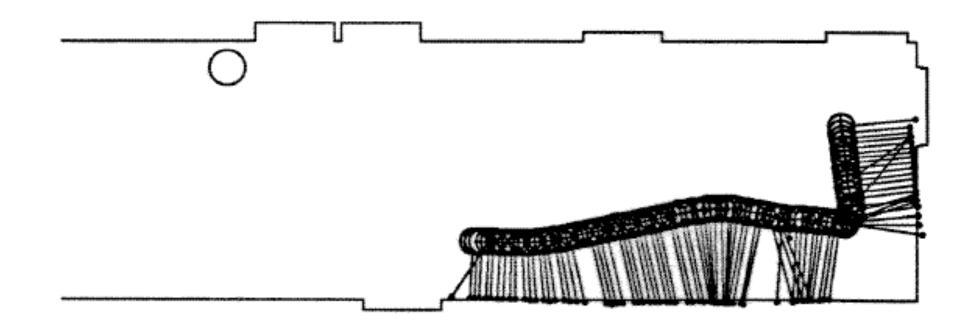
– Because:

Tuning the Wall Follower

- The system is $\ddot{e} + k_1 \dot{e} + k_2 e = 0$
- Critical damping requires $k_1^2 4k_2 = 0$ $k_1 = \sqrt{4k_2}$
- Slightly underdamped performs better.
 - Set k_2 by experience.
 - Set k_1 a bit less than $\sqrt{4k_2}$

An Observer for Distance to Wall

- Short sonar returns are reliable.
 - They are likely to be perpendicular reflections.

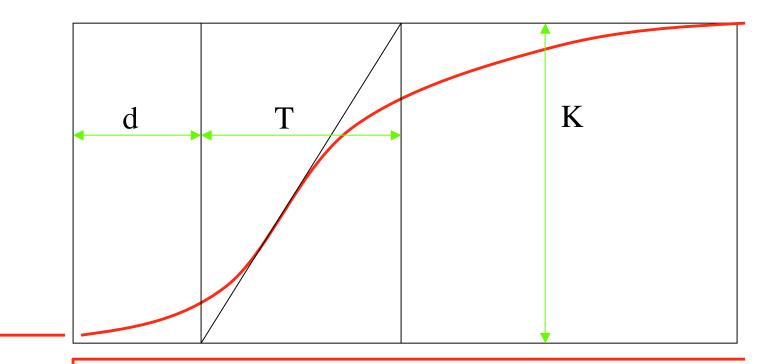


Alternatives

- The wall follower is a PD control law.
- A target seeker should probably be a PI control law, to adapt to motion.
- Can try different tuning values for parameters.
 - This is a simple model.
 - Unmodeled effects might be significant.

Ziegler-Nichols Tuning

- Open-loop response to a unit step increase.
 - d is deadtime. T is the process time constant.
 - K is the process gain.



Tuning the PID Controller

• We have described it as:

$$u(t) = -k_{P} e(t) - k_{I} \int_{0}^{t} e \, dt - k_{D} \dot{e}(t)$$

• Another standard form is:

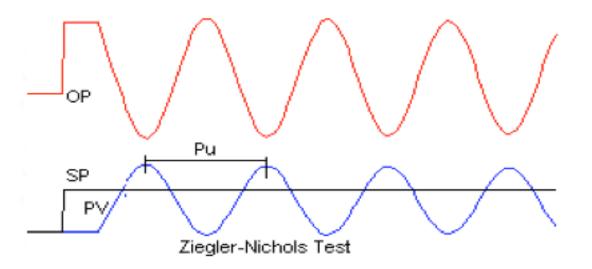
$$u(t) = -P\left[e(t) + T_I \int_0^t e \, dt + T_D \dot{e}(t)\right]$$

• Ziegler-Nichols says:

$$P = \frac{1.5 \cdot T}{K \cdot d} \qquad T_I = 2.5 \cdot d \qquad T_D = 0.4 \cdot d$$

Ziegler-Nichols Closed Loop

- 1. Disable D and I action (pure P control).
- 2. Make a step change to the setpoint.
- 3. Repeat, adjusting controller gain until achieving a stable oscillation.
 - This gain is the "ultimate gain" K_u .
 - The period is the "ultimate period" P_u .



Closed-Loop Z-N PID Tuning

- A standard form of PID is: $u(t) = -P\left[e(t) + T_I \int_{0}^{t} e \, dt + T_D \dot{e}(t)\right]$
- For a PI controller: $P = 0.45 \cdot K_u \qquad T_I = \frac{r_u}{1.2}$
- For a PID controller: $P = 0.6 \cdot K_u \qquad T_I = \frac{P_u}{2} \qquad T_D = \frac{P_u}{8}$

Summary of Concepts

- Dynamical systems and phase portraits
- Qualitative types of behavior
 - Stable vs unstable; nodal vs saddle vs spiral
 - Boundary values of parameters
- Designing the wall-following control law
- Tuning the PI, PD, or PID controller
 - Ziegler-Nichols tuning rules
 - For more, Google: controller tuning

Followers

- A follower is a control law where the robot moves forward while keeping some error term small.
 - Open-space follower
 - Wall follower
 - Coastal navigator
 - Color follower

Control Laws Have Conditions

- Each control law includes:
 - A *trigger*: Is this law applicable?
 - The law itself: $\mathbf{u} = H_i(\mathbf{y})$
 - A *termination condition*: Should the law stop?

Open-Space Follower

- Move in the direction of large amounts of open space.
- Wiggle as needed to avoid specular reflections.
- Turn away from obstacles.
- Turn or back out of blind alleys.

Wall Follower

- Detect and follow right or left wall.
- PD control law.
- Tune to avoid large oscillations.
- Terminate on obstacle or wall vanishing.

Coastal Navigator

- Join wall-followers to follow a complex "coastline"
- When a wall-follower terminates, make the appropriate turn, detect a new wall, and continue.
- Inside and outside corners, 90 and 180 deg.
- Orbit a box, a simple room, or the desks.

Color Follower

- Move to keep a desired color centered in the camera image.
- Train a color region from a given image.
- Follow an orange ball on a string, or a brightly-colored T-shirt.

Problems and Solutions

- Time delay
- Static friction
- Pulse-width modulation
- Integrator wind-up
- Chattering
- Saturation, dead-zones, backlash
- Parameter drift

Unmodeled Effects

• Every controller depends on its simplified model of the world.

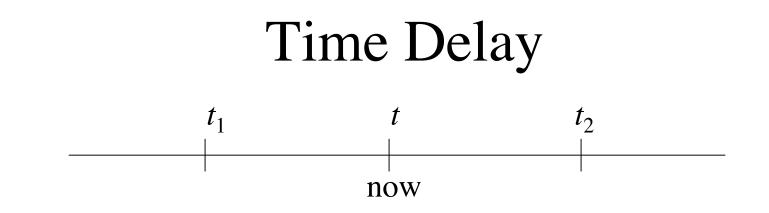
– Every model omits almost everything.

• If unmodeled effects become significant, the controller's model is wrong,

- so its actions could be seriously wrong.

• Most controllers need special case checks.

– Sometimes it needs a more sophisticated model.



- At time *t*,
 - Sensor data tells us about the world at $t_1 < t$.
 - Motor commands take effect at time $t_2 > t$.
 - The lag is $dt = t_2 t_1$.
- To compensate for lag time,
 - Predict future sensor value at t_2 .
 - Specify motor command for time t_2 .

Predicting Future Sensor Values

- Later, *observers* will help us make better predictions.
- Now, use a simple prediction method:
 - If sensor s is changing at rate ds/dt,
 - At time *t*, we get $s(t_1)$, where $t_1 < t$,
 - Estimate $s(t_2) = s(t_1) + ds/dt * (t_2 t_1)$.
- Use $s(t_2)$ to determine motor signal u(t) that will take effect at t_2 .

Static Friction ("Stiction")

- Friction forces oppose the direction of motion.
- We've seen damping friction: $F_d = -f(v)$
- Coulomb ("sliding") friction is a constant F_c depending on force against the surface.

– When there is motion, $F_c = \eta$

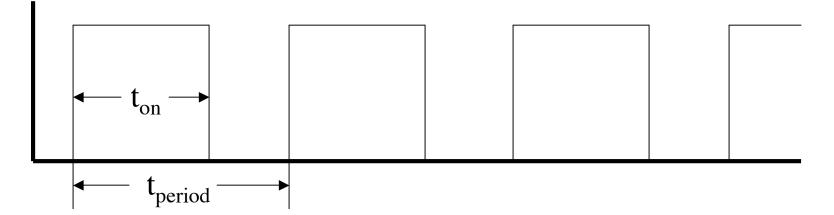
- When there is no motion, $F_c = \eta + \varepsilon$
- Extra force is needed to unstick an object and get motion started.

Why is Stiction Bad?

- Non-zero steady-state error.
- Stalled motors draw high current.
 - Running motor converts current to motion.
 - Stalled motor converts *more* current to heat.
- Whining from pulse-width modulation.
 - Mechanical parts bending at pulse frequency.

Pulse-Width Modulation

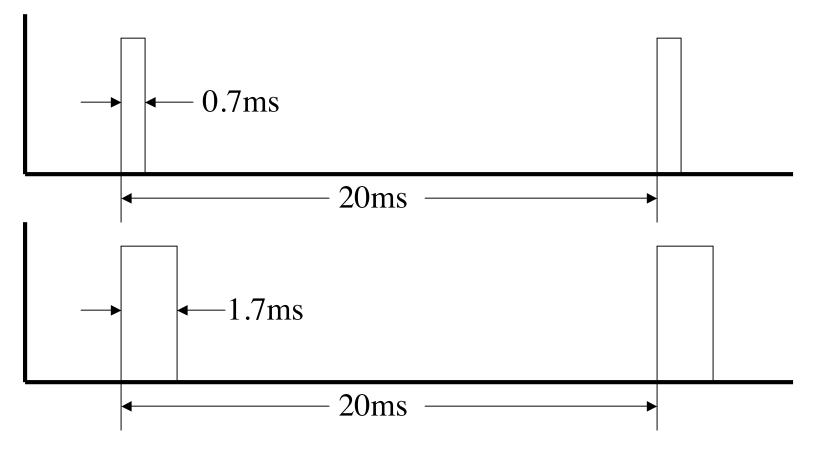
- A digital system works at 0 and 5 volts.
 - Analog systems want to output control signals over a continuous range.
 - How can we do it?
- Switch very fast between 0 and 5 volts.
 - Control the average voltage over time.
- Pulse-width ratio = t_{on}/t_{period} . (30-50 µsec)



Pulse-Code Modulated Signal

• Some devices are controlled by the length of a pulse-code signal.

- Position servo-motors, for example.



Integrator Wind-Up

• Suppose we have a PI controller

$$u(t) = -k_P e(t) - k_I \int_0^t e \, dt + u_b$$

• Motion might be blocked, but the integral is winding up more and more control action.

$$u(t) = -k_P e(t) + u_b$$
$$\dot{u}_b(t) = -k_I e(t)$$

• Reset the integrator on significant events.

Chattering

- Changing modes rapidly and continually.
 - Bang-Bang controller with thresholds set too close to each other.
 - Integrator wind-up due to stiction near the setpoint, causing jerk, overshoot, and repeat.

Dead Zone

- A region where controller output does not affect the state of the system.
 - A system caught by static friction.
 - Cart-pole system when the pendulum is horizontal.
 - Cruise control when the car is stopped.
- Integral control and dead zones can combine to cause integrator wind-up problems.

Saturation

- Control actions cannot grow indefinitely.
 - There is a maximum possible output.
 - Physical systems are necessarily nonlinear.
- It might be nice to have bounded error by having infinite response.

– But it doesn't happen in the real world.

Backlash

- Real gears are not perfect connections.
 - There is space between the teeth.
- On reversing direction, there is a short time when the input gear is turning, but the output gear is not.

Parameter Drift

• Hidden parameters can change the behavior of the robot, for no obvious reason.

- Performance depends on battery voltage.

- Repeated discharge/charge cycles age the battery.
- A controller may compensate for small parameter drift until it passes a threshold.
 - Then a problem suddenly appears.
 - Controlled systems make problems harder to find

Unmodeled Effects

• Every controller depends on its simplified model of the world.

- Every model omits almost everything.

• If unmodeled effects become significant, the controller's model is wrong,

- so its actions could be seriously wrong.

• Most controllers need special case checks.

– Sometimes it needs a more sophisticated model.