Intersections of the Future: Using Fully Autonomous Vehicles

Prof. Peter Stone

Department of Computer Science
The University of Texas at Austin

Transportation Infrastructure: Present and Future

- Today's transportation infrastructure is designed for human drivers.
- In the future:

Autonomous Traffic Management

- Utilize the capacity of autonomous vehicles to improve traffic in transportation systems.
- Highly Efficient
 - → Less fuel consumption
 - → Less emissions
 - → Sustainable society

autonomous intersection management

Autonomous Intersection Management

- Dramatically reduce the traffic delay.
- Reduce the overhead of fuel consumption by approximately two thirds.

Kurt Dresner and Peter Stone. A Multiagent Approach to Autonomous Intersection Management. *JAIR* 2008.

D. Fajardo, T.-C. Au, S. T. Waller, P. Stone, and D. Yang. Automated Intersection Control: Performance of a Future Innovation Versus Current Traffic Signal Control. In *Transportation Research Record: Journal of the Transportation Research Board*, 2011.

Grid-Based Collision Detection

Is the protocol safe?

Safety Measures

- Buffer
- The protocol is fail-safe in the event of message dropping
 - If all autonomous vehicles follow the protocol, guarantee no collisions.

- When a crash occurs, sends **STOP** messages to all vehicles nearby.
 - Avoid most collisions. But some are unavoidable.

Sharing the Road with Human Drivers

- Autonomous vehicles won't displace manual-controlled vehicles in one day.
- Some people enjoy driving.
- FCFS-signal = First-Come, First-Served Policy + Traffic Signals

Evaluating AIM with Real Autonomous vehicles

- Completely testing AIM on real hardware requires a fleet of autonomous vehicles
 - Expensive and dangerous!
- We implemented a mixed reality platform
 - Testing a single real autonomous vehicle that interacts with many virtual (or simulated) vehicles.

Marvin – our autonomous vehicle

Mixed Reality Platform

Physical State of the Vehicle (GPS Location, Heading, Velocity, etc.)

Mixed Reality in Action

Outline

- Introduction to AIM
- Autonomous Traffic Management for Road Networks
- Innovative Traffic Controls
- Future Directions

Outline

- Introduction to AIM
- Autonomous Traffic Management for Road Networks
- Innovative Traffic Controls
- Future Directions

Autonomous Traffic Management in Road Networks

Dynamic Route Planning

- Examined different navigation policies by which autonomous vehicles can dynamically alter their planned paths
- Braess' paradox

Braess' Paradox

Phenomenon in which adding additional capacity to a network, when moving entities selfishly choose their routes, results in reduced overall performance.

Outline

- Introduction to AIM
- Autonomous Traffic Management for Road Networks
- Innovative Traffic Controls
- Future Directions

Contraflow Lane Reversal

- Increase the capacity of roads without increasing land use for transportation.
- Mainly use to control traffic during rush hour and emergency evacuation

Existing Hardware for Lane Reversal

Signals of lane direction

Zipper machines

- Limitations:
 - for certain hours and locations only
 - must carefully plan ahead
- Can we do better?

Dynamic Lane Reversal

- Yes, we can do better.
- Dynamic Lane Reversal
 - Safely and quickly change lane directions at a much smaller timescale
 - Fast update of contraflow strategies for a road network
- Benefits
 - adapt to the changing traffic conditions

Conditions For Lane Reversal

- Under what conditions would contraflow lane reversal would be beneficial?
 - A road
 - An intersection
 - A road network

Lane Reversal for a Road

- Capacity: C₀ and C₁
- Target traffic rates: β_0 and β_1
- Effective traffic rates: $\lambda_0 = \min(\beta_0, C_0)$ and $\lambda_1 = \min(\beta_1, C_1)$
- Throughput of the road: $\lambda_0 + \lambda_1$

Saturation of a Road

- If $\beta_0 > c_0$, the eastbound lanes are **oversaturated**.
- If β_0 < c_0 , the eastbound lanes are **undersaturated**.
- If $\beta_0 = c_0$, the eastbound lanes are **saturated**.

Necessary and Sufficient Conditions for Lane Reversals for a Road

- Criterion: $\lambda_0 + \lambda_1 < \lambda'_0 + \lambda'_1$
- Lane reversal is beneficial if and only if the eastbound lanes are oversaturated by δ_0 while the westbound lanes are undersaturated by δ_1

$$-\max(C_1 - \delta_1, 0) < \delta_0$$

Lane Reversal for an Intersection controlled by Traffic Signals

	Before reversal	After reversal	Change
Eastbound road	4618.5 ± 8.8	5228.0 ± 12.2	13.2%
Westbound road	1184.5 ± 14.1	1124.7 ± 9.6	-5.0%
Northbound road	1711.6 ± 11.3	1700.6 ± 13.6	-0.6%
Southbound road	1712.8 ± 13.8	1714.6 ± 12.1	-0.1%
Intersection	9183.3 ± 32.4	9775.8 ± 26.6	6.5%

- Number of Trials: 30
- 1 hour of simulations in each trials

Dynamic Lane Reversal (DLR)

Experimental results averaged over 30 trials – each 1000 seconds.

Multicommodity Flow Problem

- A generalization of maximum flow problem
- An NP-hard problem
- Capacity constraint on each directed edges

Bi-Level Programming Formulation

- Upper level: Allocation of capacity to each direction of all roads
- Lower level: Solve the classic User Equilibrium model by Wardrop.
- Genetic Algorithms (GAs)
 - A gene represents the capacity of each direction of roads.

Maximum Flow vs. User Equilibrium

- The maximum flow problem has a unique solution that is independent of vehicles' behavior.
- But drivers are self-interested they do not cooperate to achieve the maximum flow
- User equilibrium the system behavior when each drivers minimizes their travel times.

Random Road Network

- Road network on a planar grid
- Three types of roads:
 - Street (89%)
 - Arterial road (10%)
 - Main road (1%)
- Flows are generated by selecting source and sink randomly.

Experimental Results with ILP

- 34 different networks
 - -10×10 intersections
- 10 hours of simulations
- 4 random flows per hour
- Reconfiguration period
- Hourly reconfiguration vs. static configuration
 - 72% increase in throughput

Outline

- Introduction to AIM
- Autonomous Traffic Management for Road Networks
- Innovative Traffic Controls
- Future Directions

Micro-tolling

- Congestion pricing at a very fine-grained level via auction or dynamic road/intersection pricing.
- Incentivize cars to adjust their routes based on dynamically changing tolls.
- Challenges: predict how the rerouting strategy actually affects the equilibrium after prices are changed.

Conclusions and Future Work

- It is possible to make modern transportation systems much more efficient.
- Autonomous Driving
- Mixed Reality Simulation Platform
- Autonomous Intersection Management
- Traffic management for road networks
- Contraflow lane reversal
- In the future
 - More efficient transportation infrastructure to cope with increasing demand for transport

Prof. Peter Stone

Department of Computer Science
The University of Texas at Austin
(Thanks to Kurt Dresner, Tsz-Chiu Au,
Matthew Hausknecht, Travis Waller, FHWA, NSF)

