Artificial Intelligence
Driving Is Easy

- Eating, phone calls, texting, sleeping
- Drunk driving
- Aggressive driving
Driving Is Hard!

- Distance and velocity estimation
- Physical dexterity
- Piloting vs. navigating
- Split-second reactions
To what extent and how can a multiagent intersection control mechanism take advantage of the capabilities of autonomous vehicles in order to make automobile travel safer and faster?
Desiderata

- Autonomy
- Low communication complexity
- Sensor model realism
- Protocol standardization
- Deadlock/starvation avoidance
- Incremental deployability
- Safety
- Efficiency
Measuring Efficiency

Metrics

 HttpResponseMessage: increased travel time due to intersection

HttpResponseMessage: total vehicles/time/lane
Simulator

“aim3” http://code.google.com/p/aim3

~20K lines of Java

Discrete time (0.02 s)

Non-holonomic vehicle motion

Point-to-point/broadcast communication

Vehicle spawned using Poisson process
Vehicle-to-Intersection

- **Driver agents** call ahead to reserve a region of space-time.
- **Intersection manager** approves or denies based on an intersection control policy.
- Vehicles may not enter the intersection without a reservation.
- **Driver agents** trust the intersection manager in the intersection.
I’m arriving at time t...
Sounds good to me!
Protocol

REQUEST
source_id
destination_id
vehicle_length
vehicle_width
maximum_acceleration
minimum_acceleration
minimum_velocity
front_wheel_displacement
rear_wheel_displacement
max_steering_angle
max_turn_per_second
emergency
traversal_proposals
arrival_time
arrival_velocity
maximum_velocity

CANCEL
source_id
destination_id
reservation_id

DONE
source_id
destination_id

AWAY
source_id
destination_id

ACZ_REQUEST
source_id
destination_id
start_lane
target_lane
vehicle_length

ACZ_CONFIRM
source_id
destination_id
ticket_number
start_lane
target_lane
acz_distance

ACZ_EXIT
source_id
destination_id

ACZ_CANCEL
source_id
destination_id
ticket_number

ACZ_ENTERED
source_id
destination_id
ticket_number

_EMERGENCY_STOP
source_id
destination_id

ACZ_REJECT
source_id
destination_id
ticket_number

REJECT
source_id
destination_id
next_communication
reason

CONFIRM
source_id
destination_id
reservation_id
arrival_time
early_error
late_error
arrival_lane
departure_lane
arrival_velocity
acz_distance
accelerations
Protocol

The Important Points

- Set of messages and rules
- Digitally signed
- Agent implementations do not matter
- Assume communication failure
- Current mechanisms subsumed
The FCFS Policy

“First come, first served”
Primary policy
Grid of reservation tiles
Internal simulation of vehicles’ trajectories
Reservation Tile

“Granularity”
Time t
FCFS Video
Vehicle-to-Vehicle

- Driver agents broadcast a claim
- Define relations over claims:
 - Conflict
 - Priority
 - Dominance
- Permissibility
I’m arriving at time t...

Uh, I’m also arriving at time t...

I’m arriving at time t...

Time t for me too...

No, I’m arriving at time t...

Uh, I’m also arriving at time t...
<table>
<thead>
<tr>
<th>Source ID</th>
<th>Message ID</th>
<th>IXN ID</th>
<th>Stopped at IXN</th>
<th>Arrival Lane</th>
<th>Departure Lane</th>
<th>Arrival Time</th>
<th>Departure Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>13</td>
<td>5</td>
<td>False</td>
<td>1</td>
<td>2</td>
<td>128479</td>
<td>128523</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>5</td>
<td>False</td>
<td>1</td>
<td>2</td>
<td>128479</td>
<td>128613</td>
</tr>
<tr>
<td>3</td>
<td>10</td>
<td>5</td>
<td>False</td>
<td>1</td>
<td>2</td>
<td>128479</td>
<td>128497</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>5</td>
<td>False</td>
<td>1</td>
<td>2</td>
<td>128479</td>
<td>128564</td>
</tr>
</tbody>
</table>
V2V Video
Human Usability
The Benefits

- Some people enjoy driving
- Classic cars
- Transition period
- Concepts extend to cyclists, pedestrians
The FCFS-Signal Policy

- Autonomous vehicles use protocol
- Human-driven vehicles use signals
- Policy contains a signal model
- Uses state of relevant signal at arrival time:
 - **Green**: accept
 - **Yellow**: reject
 - **Red**: FCFS
- Set aside off-limits tiles during green phases
Single-Lane
Failure Mode Analysis

- Enable collision detection
- Trigger incidents, examine aftermath
- Construct crash log
Mitigating Catastrophe

Assume intersection manager can detect

Reaction:
- Refuse future reservations
- **Emergency-Stop** message

Oblivous vs. passive vs. active

What if vehicles do not receive?
Average Number Of Crashed Vehicles

- 6 Lanes
- 3 Lanes

- Passive
 - 40%
 - 80%

Tuesday, November 10, 2009
best case # of cars today: 1
worst case # of cars involved: 4.5
accidents due to driver error: ~96%

1 - (4.5 * 0.04) : 82%
Multiple Intersections
What’s The Big Deal?

- Protocol considerations
- Downstream effects
- Driver agent navigation
- Upstream effects
Admission Control Zone (ACZ)
Admission Control Zone (ACZ) Capacity
I’m arriving at time t...
Admission Control Zone (ACZ)
Sounds good to me...
I’m arriving at time t'...
Admission Control Zone (ACZ)
Admission Control Zone (ACZ)

I'm away!

Tuesday, November 10, 2009
Admission Control Zone

ACZ Capacity

I'm away!

Admission Control Zone (ACZ)
Multi-intersection Video
Other Results

- Effects of multiple intersections
- Emergency vehicles
- On-the-fly policy switching
- Learning policy selection
Related Work
Intelligent Vehicles

Object detection and tracking
- Stereo far-IR/fusion (Mählisch et al. 2005)
- Gray-valued video (Gepperth et al. 2005)

Lane following
- NN for Road Departure Warning (Kohl et al. 2006)
- “No Hands Across America” (Pomerleau 1995)
- Robust to lighting/road conditions (Watanabe and Nishida 2005)
- Unmarked roads (Ramström and Christensen 2005)

Adaptive cruise control (Jaguar, Honda, BMW, Nissan, Toyota)
Related Work
Traffic Signals

- TRANSYT (Robertson 1969)
- SCOOT (Hunt et al. 1981)
- Cooperative traffic signals (Roozemond 1999)
- Q-learning (Abdulhai et al. 2003)
- Learning Classifier Systems (Bull et al. 2004)
- MAS + game theory (Bazzan 2005)
Related Work

Autonomous Vehicles at Intersections

- “Potential collision points” (Rasche and Naumann 1998)
- Steering algorithms/collision avoidance (Reynolds 1999)
- Platoons (Clement 2002, Hallé and Chaib-draa 2005)
- Physical robots (Kolodko and Vlacic 2003)
Future Directions
Mixed Simulation
Future Directions
Proteus Robots
Future Directions
Exploring Asynchronicity
Future Directions
Exploring Asynchronicity