Negative Information and Line Observations for Monte Carlo Localization

Todd Hester Peter Stone

Learning Agents Research Group Department of Computer Sciences The University of Texas at Austin

IEEE International Conference on Robotics and Automation, 2008

Localization Problem Particle Filtering

The Problem

Mobile Robot Localization

Maintain estimate of global position and orientation over time

• Given map of fixed landmark locations

Not SLAM

ヘロト 人間 ト イヨト イヨト

э

Localization Problem Particle Filtering

The Problem

Mobile Robot Localization

Maintain estimate of global position and orientation over time

- Given map of fixed landmark locations
- Not SLAM

ヘロト 人間 ト イヨト イヨト

3

Localization Problem Particle Filtering

Challenging Platform

Typical Platform

- Wheeled robot
- Range-finding sensors

Sony Aibo ERS-7

- Color CMOS Camera in nose
 - Narrow field-of-view (56°)
 - 30 YCrCb frames per second
- Quadruped
- 576MHz processor
 - All on-board processing

Localization Problem Particle Filtering

Challenging Platform

Our Platform

- Legged robot
- Vision-based sensors
- Sony Aibo ERS-7
 - Color CMOS Camera in nose
 - Narrow field-of-view (56°)
 - 30 YCrCb frames per second
 - Quadruped
 - 576MHz processor
 - All on-board processing

(日)

Localization Problem Particle Filtering

Goal

Desiderata

- Navigate to specific point quickly
- Remain localized while colliding
- Recover quickly from kidnappings

Approach

- Begin with baseline MCL algorithm
- Add Negative Information
- Add Line Observations

Significant improvement over baseline

Localization Problem Particle Filtering

Goal

Desiderata

- Navigate to specific point quickly
- Remain localized while colliding
- Recover quickly from kidnappings

Approach

- Begin with baseline MCL algorithm
- Add Negative Information
- Add Line Observations

Significant improvement over baseline

Localization Problem Particle Filtering

Goal

Desiderata

- Navigate to specific point quickly
- Remain localized while colliding
- Recover quickly from kidnappings

Approach

- Begin with baseline MCL algorithm
- Add Negative Information
- Add Line Observations

Significant improvement over baseline

Localization Problem Particle Filtering

Outline

Introduction

- Localization Problem
- Particle Filtering

2 Enhancements

- Negative Information
- Line Observations

3 Empirical Results

- Physical Robot Experiments
- Simulation Experiments

3 🕨 🖌 3

Localization Problem Particle Filtering

Outline

(4) (3) (4) (4) (4)

< /₽ ▶

Localization Problem Particle Filtering

Method: Particle Filtering

- Estimate p(h_T|o_T, a_{T-1}, o_{T-1}, a_{T-2}, ..., a₀): Distribution of poses given observations and actions
- Represented by finite set of samples: particles
 - Each is a hypothesis: $\langle \langle x, y, \theta \rangle, p \rangle$
- Weighted average to get single estimate of pose and confidence

ヘロト 人間 ト イヨト イヨト

э

Localization Problem Particle Filtering

Method: Particle Filtering

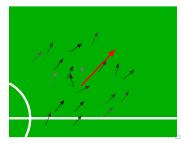
- Estimate p(h_T|o_T, a_{T-1}, o_{T-1}, a_{T-2}, ..., a₀):
 Distribution of poses given observations and actions
- Represented by finite set of samples: particles
 - Each is a hypothesis: $\langle \langle \mathbf{x}, \mathbf{y}, \theta \rangle, \mathbf{p} \rangle$
- Weighted average to get single estimate of pose and confidence



Localization Problem Particle Filtering

Method: Particle Filtering

- Estimate p(h_T|o_T, a_{T-1}, o_{T-1}, a_{T-2}, ..., a₀):
 Distribution of poses given observations and actions
- Represented by finite set of samples: particles
 - Each is a hypothesis: $\langle \langle x, y, \theta \rangle, p \rangle$
- Weighted average to get single estimate of pose and confidence



Localization Problem Particle Filtering

Observation Update

• Need sensor model: p(o|h)

Predicts observations given pose hypothesis using map

- Update each particle when robot sees something
 - Compute similarity for each observed landmark in frame
 - Use angles and distances to landmarks
 - Difference in measured and expected values
 - Compute product of similarities
 - Adjust probability closer to new value

ヘロト 人間 ト イヨト イヨト

э

Localization Problem Particle Filtering

Observation Update

- Need sensor model: p(o|h)
 - Predicts observations given pose hypothesis using map
- Update each particle when robot sees something
 - Compute similarity for each observed landmark in frame
 - Use angles and distances to landmarks
 - Difference in measured and expected values
 - Compute product of similarities
 - Adjust probability closer to new value

< 同 > < 回 > < 回 >

Localization Problem Particle Filtering

Observation Update

- Need sensor model: p(o|h)
 - Predicts observations given pose hypothesis using map
- Update each particle when robot sees something
 - Compute similarity for each observed landmark in frame
 - Use angles and distances to landmarks
 - Difference in measured and expected values
 - Compute product of similarities
 - Adjust probability closer to new value

< 同 > < 回 > < 回 >

Localization Problem Particle Filtering

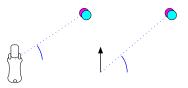
Observation Update

- Need sensor model: p(o|h)
 - Predicts observations given pose hypothesis using map
- Update each particle when robot sees something
 - Compute similarity for each observed landmark in frame
 - Use angles and distances to landmarks
 - Difference in measured and expected values
 - Compute product of similarities
 - Adjust probability closer to new value

・ 同 ト ・ ヨ ト ・ ヨ ト

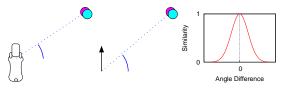
Localization Problem Particle Filtering

- Need sensor model: p(o|h)
 - Predicts observations given pose hypothesis using map
- Update each particle when robot sees something
 - Compute similarity for each observed landmark in frame
 - Use angles and distances to landmarks
 - Difference in measured and expected values
 - Compute product of similarities
 - Adjust probability closer to new value



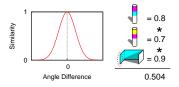
Localization Problem Particle Filtering

- Need sensor model: p(o|h)
 - Predicts observations given pose hypothesis using map
- Update each particle when robot sees something
 - Compute similarity for each observed landmark in frame
 - Use angles and distances to landmarks
 - Difference in measured and expected values
 - Compute product of similarities
 - Adjust probability closer to new value



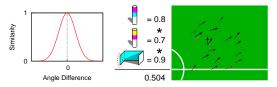
Localization Problem Particle Filtering

- Need sensor model: p(o|h)
 - Predicts observations given pose hypothesis using map
- Update each particle when robot sees something
 - Compute similarity for each observed landmark in frame
 - Use angles and distances to landmarks
 - Difference in measured and expected values
 - Compute product of similarities
 - Adjust probability closer to new value



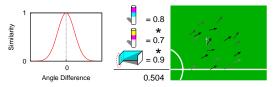
Localization Problem Particle Filtering

- Need sensor model: p(o|h)
 - Predicts observations given pose hypothesis using map
- Update each particle when robot sees something
 - Compute similarity for each observed landmark in frame
 - Use angles and distances to landmarks
 - Difference in measured and expected values
 - Compute product of similarities
 - Adjust probability closer to new value



Localization Problem Particle Filtering

- Need sensor model: p(o|h)
 - Predicts observations given pose hypothesis using map
- Update each particle when robot sees something
 - Compute similarity for each observed landmark in frame
 - Use angles and distances to landmarks
 - Difference in measured and expected values
 - Compute product of similarities
 - Adjust probability closer to new value

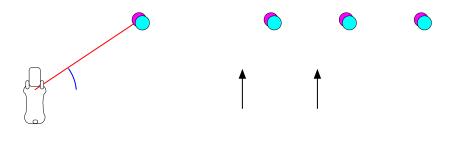


Localization Problem Particle Filtering

Ambiguous Landmarks

• What if the landmarks are ambiguous?

Update each particle based on most likely landmark
 Compute similarity for each possible landmark
 Update particle using most likely landmark (most similar

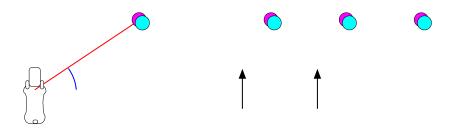


< □ > < 同 > < 回 > < 回 >

Localization Problem Particle Filtering

Ambiguous Landmarks

- What if the landmarks are ambiguous?
- Update each particle based on most likely landmark
 - Compute similarity for each possible landmark
 Update particle using most likely landmark (most similar)

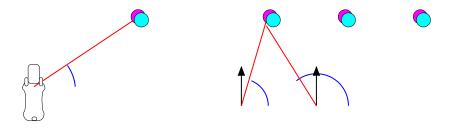


★ □ ► ★ □ ►

Localization Problem Particle Filtering

Ambiguous Landmarks

- What if the landmarks are ambiguous?
- Update each particle based on most likely landmark
 - Compute similarity for each possible landmark
 - Update particle using most likely landmark (most similar)



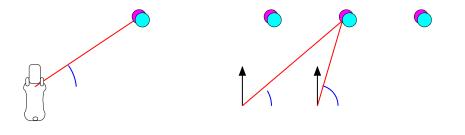
< A >

-∢ ∃ →

Localization Problem Particle Filtering

Ambiguous Landmarks

- What if the landmarks are ambiguous?
- Update each particle based on most likely landmark
 - Compute similarity for each possible landmark
 - Update particle using most likely landmark (most similar)



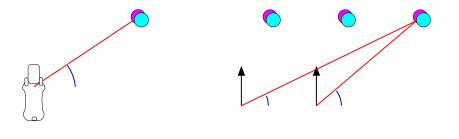
< A >

- ₹ 🖬 🕨

Localization Problem Particle Filtering

Ambiguous Landmarks

- What if the landmarks are ambiguous?
- Update each particle based on most likely landmark
 - Compute similarity for each possible landmark
 - Update particle using most likely landmark (most similar)

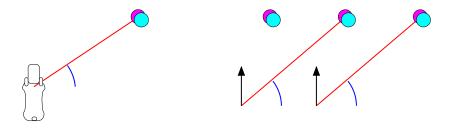


< A >

Localization Problem Particle Filtering

Ambiguous Landmarks

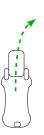
- What if the landmarks are ambiguous?
- Update each particle based on most likely landmark
 - Compute similarity for each possible landmark
 - Update particle using most likely landmark (most similar)

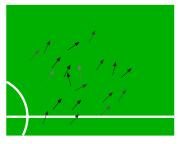


Localization Problem Particle Filtering

Motion Update

- Need motion model: p(h'|h, a)
 - Predict new pose given previous hypothesis and action
- Update each particle when robot moves
 - Use odometry velocities to translate particles

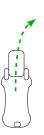


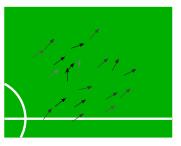


Localization Problem Particle Filtering

Motion Update

- Need motion model: p(h'|h, a)
 - Predict new pose given previous hypothesis and action
- Update each particle when robot moves
 - Use odometry velocities to translate particles





Todd Hester and Peter Stone – UT Austin Negative Information and Line Observations for MCL

Negative Information Line Observations

Outline

(4) (3) (4) (4) (4)

< /₽ ▶

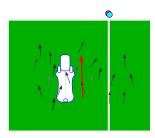
Negative Information Line Observations

Negative Information

• Expect to see a landmark, but do not see it

How it works

- Particles expect to see a landmark
- Robot does not see the landmark
- Update the particles with a lower probability

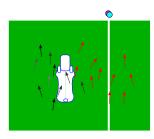


э

Negative Information Line Observations

Negative Information

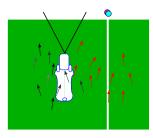
- Expect to see a landmark, but do not see it
- How it works
 - Particles expect to see a landmark
 - Robot does not see the landmark
 - Update the particles with a lower probability



Negative Information Line Observations

Negative Information

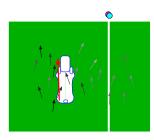
- Expect to see a landmark, but do not see it
- How it works
 - Particles expect to see a landmark
 - Robot does not see the landmark
 - Update the particles with a lower probability



Negative Information Line Observations

Negative Information

- Expect to see a landmark, but do not see it
- How it works
 - Particles expect to see a landmark
 - Robot does not see the landmark
 - Update the particles with a lower probability

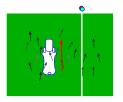


Negative Information Line Observations

Previous work of Hoffmann et al

• For each particle, assume robot is at that particle's pose

- For each landmark
 - Determine if landmark should be in field of view
 - Check if landmark was seen
 - If it was not seen.
 - Update particle with probability of missing an observation

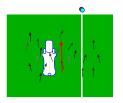


Negative Information Line Observations

Previous work of Hoffmann et al

For each particle, assume robot is at that particle's pose For each landmark

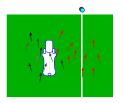
- Determine if landmark should be in field of view
- Check if landmark was seen
- If it was not seen,
- Update particle with probability of missing an observation



Negative Information Line Observations

Previous work of Hoffmann et al

- For each particle, assume robot is at that particle's pose
 - For each landmark
 - Determine if landmark should be in field of view
 - Check if landmark was seen
 - If it was not seen,
 - Update particle with probability of missing an observation

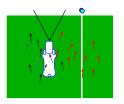


< 同 > < 回 > < 回 >

Negative Information Line Observations

Previous work of Hoffmann et al

- For each particle, assume robot is at that particle's pose
 - For each landmark
 - Determine if landmark should be in field of view
 - Check if landmark was seen
 - If it was not seen,
 - Update particle with probability of missing an observation



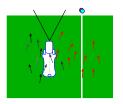
< /₽ ▶

★ ∃ ► ★ ∃

Negative Information Line Observations

Previous work of Hoffmann et al

- For each particle, assume robot is at that particle's pose
 - For each landmark
 - Determine if landmark should be in field of view
 - Check if landmark was seen
 - If it was not seen,
 - Update particle with probability of missing an observation

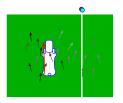


A B > A B

Negative Information Line Observations

Previous work of Hoffmann et al

- For each particle, assume robot is at that particle's pose
 - For each landmark
 - Determine if landmark should be in field of view
 - Check if landmark was seen
 - If it was not seen,
 - Update particle with probability of missing an observation



★ □ ► ★ □ ►

Negative Information Line Observations

Our approach

- More robust to missed observations of landmarks that are in field of view
- For each particle and landmark
 - Keep counters of number of consecutive frames that:
 - The landmark has been expected to be seen.
 - The landmark has not been.
 - If both of these counters are over a threshold t,
 - Update particle with probability of missing t observations
- Generalizes Hoffmann et. al's approach
 - Equivalent with t = 1

ヘロン 人間と 人間と 人間と

Negative Information Line Observations

Our approach

 More robust to missed observations of landmarks that are in field of view

For each particle and landmark

- Keep counters of number of consecutive frames that:
 - The landmark has been expected to be seen
 - The landmark has not been
- If both of these counters are over a threshold t,
 - Update particle with probability of missing t observations
- Generalizes Hoffmann et. al's approach
 - Equivalent with t = 1

ヘロト 人間 ト イヨト イヨト

э

Negative Information Line Observations

Our approach

- More robust to missed observations of landmarks that are in field of view
- For each particle and landmark
 - Keep counters of number of consecutive frames that:
 - The landmark has been expected to be seen
 - The landmark has not been
 - If both of these counters are over a threshold *t*,
 - Update particle with probability of missing t observations.
- Generalizes Hoffmann et. al's approach
 - Equivalent with t = 1

・ロッ ・ 一 ・ ・ ・ ・ ・ ・ ・ ・

Negative Information Line Observations

Our approach

- More robust to missed observations of landmarks that are in field of view
- For each particle and landmark
 - Keep counters of number of consecutive frames that:
 - The landmark has been expected to be seen
 - The landmark has not been
 - If both of these counters are over a threshold *t*,
 - Update particle with probability of missing t observations
- Generalizes Hoffmann et. al's approach
 - Equivalent with t = 1

・ロッ ・ 一 ・ ・ ・ ・ ・ ・ ・ ・

Negative Information Line Observations

Our approach

- More robust to missed observations of landmarks that are in field of view
- For each particle and landmark
 - Keep counters of number of consecutive frames that:
 - The landmark has been expected to be seen
 - The landmark has not been
 - If both of these counters are over a threshold *t*,
 - Update particle with probability of missing t observations.
- Generalizes Hoffmann et. al's approach
 - Equivalent with t = 1

ヘロト 人間 ト イヨト イヨト

э

Negative Information Line Observations

Our approach

- More robust to missed observations of landmarks that are in field of view
- For each particle and landmark
 - Keep counters of number of consecutive frames that:
 - The landmark has been expected to be seen
 - The landmark has not been
 - If both of these counters are over a threshold *t*,
 - Update particle with probability of missing *t* observations
- Generalizes Hoffmann et. al's approach
 - Equivalent with t = 1

Negative Information Line Observations

Our approach

- More robust to missed observations of landmarks that are in field of view
- For each particle and landmark
 - Keep counters of number of consecutive frames that:
 - The landmark has been expected to be seen
 - The landmark has not been
 - If both of these counters are over a threshold *t*,
 - Update particle with probability of missing *t* observations
- Generalizes Hoffmann et. al's approach

Equivalent with t = 1

ヘロト 人間 ト イヨト イヨト

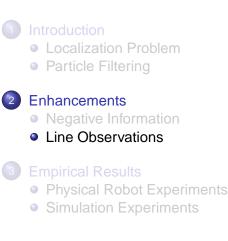
Negative Information Line Observations

Our approach

- More robust to missed observations of landmarks that are in field of view
- For each particle and landmark
 - Keep counters of number of consecutive frames that:
 - The landmark has been expected to be seen
 - The landmark has not been
 - If both of these counters are over a threshold *t*,
 - Update particle with probability of missing *t* observations
- Generalizes Hoffmann et. al's approach
 - Equivalent with t = 1

Negative Information Line Observations

Outline



(4) (3) (4) (4) (4)

< /₽ ▶

Negative Information Line Observations

Line Observations

• How do we update the particles when we see a line?

- Do not know where along the line we are
- Provides information on distance and orientation to line

< 一 →

★ □ ► ★ □ ►

Negative Information Line Observations

Line Observations

• How do we update the particles when we see a line?

- Do not know where along the line we are
- Provides information on distance and orientation to line

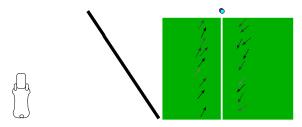
< 17 ▶

A B > A B

Negative Information Line Observations

Line Observations

- How do we update the particles when we see a line?
 - Do not know where along the line we are
 - Provides information on distance and orientation to line



3 > < 3

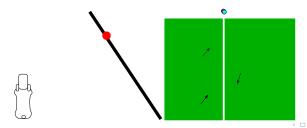
Negative Information Line Observations

Our approach

• Find closest point on observed line

- Get distance and angle to this point
- Find closest point on line from particle pose
- Update using distance and angle as before

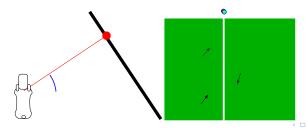
• As if this were a point landmark



Negative Information Line Observations

Our approach

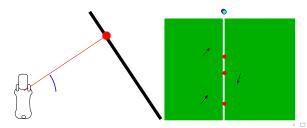
- Find closest point on observed line
- Get distance and angle to this point
- Find closest point on line from particle pose
- Update using distance and angle as before
 - As if this were a point landmark



Negative Information Line Observations

Our approach

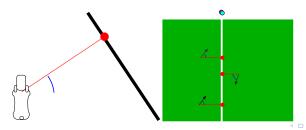
- Find closest point on observed line
- Get distance and angle to this point
- Find closest point on line from particle pose
- Update using distance and angle as before
 As if this were a point landmark



Negative Information Line Observations

Our approach

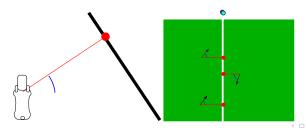
- Find closest point on observed line
- Get distance and angle to this point
- Find closest point on line from particle pose
- Update using distance and angle as before
 - As if this were a point landmark



Negative Information Line Observations

Our approach

- Find closest point on observed line
- Get distance and angle to this point
- Find closest point on line from particle pose
- Update using distance and angle as before
 - As if this were a point landmark



Physical Robot Experiments Simulation Experiments

Outline

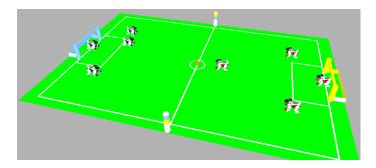
A B > A B

Physical Robot Experiments Simulation Experiments

Environment

RoboCup Legged League field

- Size: roughly $3.6m \times 5.4m$
- Landmarks: 2 beacons, 2 goals, 11 field lines



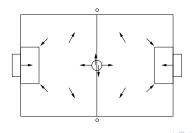
< □ > < 同 >

→ Ξ →

Physical Robot Experiments Simulation Experiments

Localization Accuracy

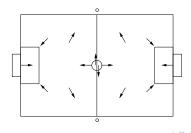
- Visit sequence of 14 points and headings
- After stabilizing at a point, record
 - Actual position and orientation
 - Robot's belief of position and orientation
- Calculate error between actual and believed pose
- Significance results using one-tailed Student's t test



Physical Robot Experiments Simulation Experiments

Localization Accuracy

- Visit sequence of 14 points and headings
- After stabilizing at a point, record
 - Actual position and orientation
 - Robot's belief of position and orientation
- Calculate error between actual and believed pose
- Significance results using one-tailed Student's t test



Physical Robot Experiments Simulation Experiments

Localization Accuracy

Four Versions of Algorithm

- Baseline (None)
- Negative Information (NEG)
- Line Observations (LINES)
- Both enhancements (All)

Average across 10 runs for each

< □ > < 同 > < 回 > < 回 >

Physical Robot Experiments Simulation Experiments

Localization Accuracy

Four Versions of Algorithm

- Baseline (None)
- Negative Information (NEG)
- Line Observations (LINES)
- Both enhancements (All)
 - Average across 10 runs for each

< □ > < 同 > < 回 > < 回 >

Physical Robot Experiments Simulation Experiments

Results

Algorithm	Distance Error(cm)	p- value	Angle Error(deg)	p- value
None	17.67	_	5.39	_
NEG	15.57	0.103	5.16	0.358
LINES	13.62	0.010	5.08	0.381
BOTH	13.38	0.014	4.40	0.104

- Line Observations provide significant improvement
- Both enchancements provide significant improvement
- Some improvement in angular error

Physical Robot Experiments Simulation Experiments

Results

Algorithm	Distance Error(cm)	p- value	Angle Error(deg)	p- value
None	17.67	_	5.39	_
NEG	15.57	0.103	5.16	0.358
LINES	13.62	0.010	5.08	0.381
BOTH	13.38	0.014	4.40	0.104

- Line Observations provide significant improvement
- Both enchancements provide significant improvement
- Some improvement in angular error

Physical Robot Experiments Simulation Experiments

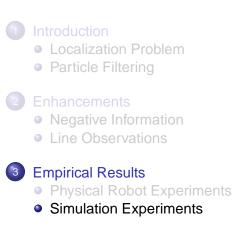
Results

Algorithm	Distance Error(cm)	p- value	Angle Error(deg)	p- value
None	17.67	_	5.39	_
NEG	15.57	0.103	5.16	0.358
LINES	13.62	0.010	5.08	0.381
BOTH	13.38	0.014	4.40	0.104

- Line Observations provide significant improvement
- Both enchancements provide significant improvement
- Some improvement in angular error

Physical Robot Experiments Simulation Experiments

Outline



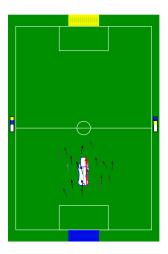
(4) (3) (4) (4) (4)

< 一型 >

Physical Robot Experiments Simulation Experiments

Simulator

- Abstract noisy observations and movements
- Always know ground truth
- Perturbations repeatable
- Misses set fraction of observations



Physical Robot Experiments Simulation Experiments

Kidnapped Robot

Robot follows figure 8 path

- Kidnapped once every 30 seconds
 - Placed at center of field at random orientation
- Measure position and angle error
 - Averaged over 2 hours (about 50 laps)
- Measure kidnap recovery time
 - Time for the robot to achieve error less than 20 cm and 20 degrees
- Significance results using one-tailed Student's t test

Physical Robot Experiments Simulation Experiments

Kidnapped Robot

- Robot follows figure 8 path
 - Kidnapped once every 30 seconds
 - Placed at center of field at random orientation
- Measure position and angle error
 - Averaged over 2 hours (about 50 laps)
- Measure kidnap recovery time
 - Time for the robot to achieve error less than 20 cm and 20 degrees
- Significance results using one-tailed Student's t test

< □ > < 同 > < 回 > < 回 >

Physical Robot Experiments Simulation Experiments

Kidnapped Robot

- Robot follows figure 8 path
 - Kidnapped once every 30 seconds
 - Placed at center of field at random orientation
- Measure position and angle error
 - Averaged over 2 hours (about 50 laps)
- Measure kidnap recovery time
 - Time for the robot to achieve error less than 20 cm and 20 degrees
- Significance results using one-tailed Student's t test

Physical Robot Experiments Simulation Experiments

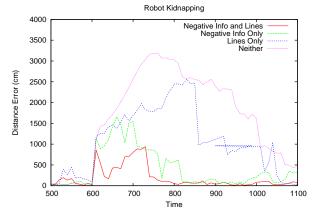
Kidnapped Robot

- Robot follows figure 8 path
 - Kidnapped once every 30 seconds
 - Placed at center of field at random orientation
- Measure position and angle error
 - Averaged over 2 hours (about 50 laps)
- Measure kidnap recovery time
 - Time for the robot to achieve error less than 20 cm and 20 degrees
- Significance results using one-tailed Student's t test

< 同 > < 回 > < 回 >

Physical Robot Experiments Simulation Experiments

Example Kidnapping



- Kidnapping at time t = 600
- Localization Accuracy slowly recovers

Physical Robot Experiments Simulation Experiments

Results

Algorithm	Distance Error(cm)	p- value	Angle Error(deg)	p- value	Recovery Time(sec)	p- value
None	46.04	_	15.8	—	7.76	—
NEG	42.29	< 10 ⁻⁶	14.0	$< 10^{-7}$	7.53	0.35
LINES	41.19	< 10 ⁻⁸	15.3	0.11	6.35	0.01
BOTH	36.74	< 10 ⁻²⁹	14.2	$< 10^{-5}$	5.86	$< 10^{-3}$

- Algorithm with both enhancements was significantly better than baseline
 - In distance error
 - In angular error
 - In kidnap recovery time
- Algorithm with both enhancements was better than all algorithms in distance error

Physical Robot Experiments Simulation Experiments

Results

Algorithm	Distance Error(cm)	p- value	Angle Error(deg)	p- value	Recovery Time(sec)	p- value
None	46.04	_	15.8	—	7.76	—
NEG	42.29	< 10 ⁻⁶	14.0	$< 10^{-7}$	7.53	0.35
LINES	41.19	< 10 ⁻⁸	15.3	0.11	6.35	0.01
BOTH	36.74	$< 10^{-29}$	14.2	< 10 ⁻⁵	5.86	$< 10^{-3}$

- Algorithm with both enhancements was significantly better than baseline
 - In distance error
 - In angular error
 - In kidnap recovery time
- Algorithm with both enhancements was better than all algorithms in distance error

Physical Robot Experiments Simulation Experiments

Results

Algorithm	Distance Error(cm)	p- value	Angle Error(deg)	p- value	Recovery Time(sec)	p- value
None	46.04	_	15.8	—	7.76	—
NEG	42.29	< 10 ⁻⁶	14.0	$< 10^{-7}$	7.53	0.35
LINES	41.19	< 10 ⁻⁸	15.3	0.11	6.35	0.01
BOTH	36.74	$< 10^{-29}$	14.2	$< 10^{-5}$	5.86	< 10 ⁻³

- Algorithm with both enhancements was significantly better than baseline
 - In distance error
 - In angular error
 - In kidnap recovery time
- Algorithm with both enhancements was better than all algorithms in distance error

Physical Robot Experiments Simulation Experiments

Results

Algorithm	Distance Error(cm)	p- value	Angle Error(deg)	p- value	Recovery Time(sec)	p- value
None	46.04	_	15.8	—	7.76	—
NEG	42.29	$< 10^{-6}$	14.0	$< 10^{-7}$	7.53	0.35
LINES	41.19	< 10 ⁻⁸	15.3	0.11	6.35	0.01
BOTH	36.74	< 10 ⁻²⁹	14.2	$< 10^{-5}$	5.86	$< 10^{-3}$

- Algorithm with both enhancements was significantly better than baseline
 - In distance error
 - In angular error
 - In kidnap recovery time
- Algorithm with both enhancements was better than all algorithms in distance error

Physical Robot Experiments Simulation Experiments

Comparison to Hoffmann et al's Method

Hoffmann et. al's Method

• Update particles with negative information after one missed observation t = 1

Our method

- Update particles with negative information after landmark has been missed *t* times
- For these experiments, t = 5

ヘロト 人間 ト イヨト イヨト

Physical Robot Experiments Simulation Experiments

Comparison to Hoffmann et al's Method

- Hoffmann et. al's Method
 - Update particles with negative information after one missed observation t = 1
- Our method
 - Update particles with negative information after landmark has been missed *t* times
 - For these experiments, t = 5

ヘロト 人間 ト イヨト イヨト

Physical Robot Experiments Simulation Experiments

Results

Algorithm	Distance Error (cm)	p- value	Angle Error(deg)	p- value
Our Method ($t = 5$)	36.74	_	14.2	—
Hoffmann ($t = 1$)	40.11	< 10 ⁻⁵	15.5	< 10 ⁻³

• Our method performed significantly better

- In distance errors
- And angular errors

< □ > < 同 > < 回 > < 回 > < 回 >

Physical Robot Experiments Simulation Experiments

Results

Algorithm	Distance Error (cm)	p- value	Angle Error(deg)	p- value
Our Method ($t = 5$)	36.74	_	14.2	_
Hoffmann ($t = 1$)	40.11	$< 10^{-5}$	15.5	< 10 ⁻³

• Our method performed significantly better

- In distance errors
- And angular errors

< □ > < 同 > < 回 > < 回 > < 回 >

Related Work

Negative Information

- Hoffmann et al [Robocup 2005, IROS 2005]
 - First implementation of negative information
 - Take occlusions into account
 - Experiments on still robot

Line Observations

- Röfer et al [Robocup 2003, 2005]
 - Discretize field into grids
 - Pre-calculate where line pixels should be in image for each grid cell
 - Update particles based on similarity in line pixel locations

- Monte Carlo Localization works well
- Want to to make use of all information available
 - Including Negative Information
 - And Line Observations
- Significantly better than baseline approach

< /₽ ▶

★ □ ► ★ □ ►