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Localization Problem
Particle Filtering

Challenging Platform

Typical Platform

Wheeled robot

Range-finding sensors

Sony Aibo ERS-7
Color CMOS Camera in nose

Narrow field-of-view (56o)
30 YCrCb frames per second

Quadruped
576MHz processor

All on-board processing
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Challenging Platform

Our Platform
Legged robot

Vision-based sensors

Sony Aibo ERS-7
Color CMOS Camera in nose

Narrow field-of-view (56o)
30 YCrCb frames per second

Quadruped
576MHz processor

All on-board processing
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Goal

Desiderata

Navigate to specific point quickly

Remain localized while colliding

Recover quickly from kidnappings

Approach

Begin with baseline MCL algorithm

Add Negative Information

Add Line Observations

Significant improvement over baseline
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Localization Problem
Particle Filtering

Method: Particle Filtering

Estimate p(hT |oT , aT−1, oT−1, aT−2, . . . , a0):
Distribution of poses given observations and actions
Represented by finite set of samples: particles

Each is a hypothesis: 〈〈x , y , θ〉 , p〉

Weighted average to get single estimate of pose and
confidence
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Localization Problem
Particle Filtering

Observation Update

Need sensor model: p(o|h)

Predicts observations given pose hypothesis using map

Update each particle when robot sees something
Compute similarity for each observed landmark in frame

Use angles and distances to landmarks
Difference in measured and expected values

Compute product of similarities
Adjust probability closer to new value
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Localization Problem
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Ambiguous Landmarks

What if the landmarks are ambiguous?
Update each particle based on most likely landmark

Compute similarity for each possible landmark
Update particle using most likely landmark (most similar)
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Localization Problem
Particle Filtering

Motion Update

Need motion model: p(h′|h, a)

Predict new pose given previous hypothesis and action

Update each particle when robot moves
Use odometry velocities to translate particles
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Negative Information
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Negative Information

Expect to see a landmark, but do not see it
How it works

Particles expect to see a landmark
Robot does not see the landmark
Update the particles with a lower probability
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Negative Information
Line Observations

Previous work of Hoffmann et al

For each particle, assume robot is at that particle’s pose
For each landmark

Determine if landmark should be in field of view
Check if landmark was seen
If it was not seen,
Update particle with probability of missing an observation
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Negative Information
Line Observations

Our approach

More robust to missed observations of landmarks that are
in field of view
For each particle and landmark

Keep counters of number of consecutive frames that:
The landmark has been expected to be seen
The landmark has not been

If both of these counters are over a threshold t,
Update particle with probability of missing t observations

Generalizes Hoffmann et. al’s approach
Equivalent with t = 1
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Negative Information
Line Observations

Line Observations

How do we update the particles when we see a line?
Do not know where along the line we are
Provides information on distance and orientation to line
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Negative Information
Line Observations

Our approach

Find closest point on observed line

Get distance and angle to this point

Find closest point on line from particle pose
Update using distance and angle as before

As if this were a point landmark
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Physical Robot Experiments
Simulation Experiments

Outline

1 Introduction
Localization Problem
Particle Filtering

2 Enhancements
Negative Information
Line Observations

3 Empirical Results
Physical Robot Experiments
Simulation Experiments
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Physical Robot Experiments
Simulation Experiments

Environment

RoboCup Legged League field
Size: roughly 3.6m × 5.4m
Landmarks: 2 beacons, 2 goals, 11 field lines
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Physical Robot Experiments
Simulation Experiments

Localization Accuracy

Visit sequence of 14 points and headings
After stabilizing at a point, record

Actual position and orientation
Robot’s belief of position and orientation

Calculate error between actual and believed pose
Significance results using one-tailed Student’s t test
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Physical Robot Experiments
Simulation Experiments

Localization Accuracy

Four Versions of Algorithm

1 Baseline (None)
2 Negative Information (NEG)
3 Line Observations (LINES)
4 Both enhancements (All)

Average across 10 runs for each
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Physical Robot Experiments
Simulation Experiments

Results

Algorithm Distance p- Angle p-
Error(cm) value Error(deg) value

None 17.67 − 5.39 −
NEG 15.57 0.103 5.16 0.358
LINES 13.62 0.010 5.08 0.381
BOTH 13.38 0.014 4.40 0.104

Line Observations provide significant improvement

Both enchancements provide significant improvement

Some improvement in angular error
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Simulator

Abstract noisy observations and
movements

Always know ground truth

Perturbations repeatable

Misses set fraction of
observations
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Kidnapped Robot

Robot follows figure 8 path
Kidnapped once every 30 seconds

Placed at center of field at random orientation

Measure position and angle error
Averaged over 2 hours (about 50 laps)

Measure kidnap recovery time
Time for the robot to achieve error less than 20 cm and 20
degrees

Significance results using one-tailed Student’s t test

Todd Hester and Peter Stone – UT Austin Negative Information and Line Observations for MCL



Introduction
Enhancements

Empirical Results
Summary

Physical Robot Experiments
Simulation Experiments

Kidnapped Robot

Robot follows figure 8 path
Kidnapped once every 30 seconds

Placed at center of field at random orientation

Measure position and angle error
Averaged over 2 hours (about 50 laps)

Measure kidnap recovery time
Time for the robot to achieve error less than 20 cm and 20
degrees

Significance results using one-tailed Student’s t test

Todd Hester and Peter Stone – UT Austin Negative Information and Line Observations for MCL



Introduction
Enhancements

Empirical Results
Summary

Physical Robot Experiments
Simulation Experiments

Kidnapped Robot

Robot follows figure 8 path
Kidnapped once every 30 seconds

Placed at center of field at random orientation

Measure position and angle error
Averaged over 2 hours (about 50 laps)

Measure kidnap recovery time
Time for the robot to achieve error less than 20 cm and 20
degrees

Significance results using one-tailed Student’s t test

Todd Hester and Peter Stone – UT Austin Negative Information and Line Observations for MCL



Introduction
Enhancements

Empirical Results
Summary

Physical Robot Experiments
Simulation Experiments

Kidnapped Robot

Robot follows figure 8 path
Kidnapped once every 30 seconds

Placed at center of field at random orientation

Measure position and angle error
Averaged over 2 hours (about 50 laps)

Measure kidnap recovery time
Time for the robot to achieve error less than 20 cm and 20
degrees

Significance results using one-tailed Student’s t test

Todd Hester and Peter Stone – UT Austin Negative Information and Line Observations for MCL



Introduction
Enhancements

Empirical Results
Summary

Physical Robot Experiments
Simulation Experiments

Example Kidnapping
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Results

Algorithm Distance p- Angle p- Recovery p-
Error(cm) value Error(deg) value Time(sec) value

None 46.04 − 15.8 − 7.76 −
NEG 42.29 < 10−6 14.0 < 10−7 7.53 0.35
LINES 41.19 < 10−8 15.3 0.11 6.35 0.01
BOTH 36.74 < 10−29 14.2 < 10−5 5.86 < 10−3

Algorithm with both enhancements was significantly better
than baseline

In distance error
In angular error
In kidnap recovery time

Algorithm with both enhancements was better than all
algorithms in distance error
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Comparison to Hoffmann et al’s Method

Hoffmann et. al’s Method
Update particles with negative information after one missed
observation t = 1

Our method
Update particles with negative information after landmark
has been missed t times
For these experiments, t = 5
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Results

Algorithm Distance p- Angle p-
Error (cm) value Error(deg) value

Our Method (t = 5) 36.74 − 14.2 −
Hoffmann (t = 1) 40.11 < 10−5 15.5 < 10−3

Our method performed significantly better
In distance errors
And angular errors

Todd Hester and Peter Stone – UT Austin Negative Information and Line Observations for MCL



Introduction
Enhancements

Empirical Results
Summary

Physical Robot Experiments
Simulation Experiments

Results

Algorithm Distance p- Angle p-
Error (cm) value Error(deg) value

Our Method (t = 5) 36.74 − 14.2 −
Hoffmann (t = 1) 40.11 < 10−5 15.5 < 10−3

Our method performed significantly better
In distance errors
And angular errors

Todd Hester and Peter Stone – UT Austin Negative Information and Line Observations for MCL



Introduction
Enhancements

Empirical Results
Summary

Related Work

Negative Information

Hoffmann et al [Robocup 2005, IROS 2005]
First implementation of negative information
Take occlusions into account
Experiments on still robot

Line Observations

Röfer et al [Robocup 2003, 2005]
Discretize field into grids
Pre-calculate where line pixels should be in image for each
grid cell
Update particles based on similarity in line pixel locations
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Summary

Monte Carlo Localization works well
Want to to make use of all information available

Including Negative Information
And Line Observations

Significantly better than baseline approach
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