
UT Austin Villa 2003: A New RoboCup Four-Legged Team

Peter Stone, Kurt Dresner, Selim T. Erdo�gan, Peggy Fidelman,

Ni
holas K. Jong, Nate Kohl, Gregory Kuhlmann, Ellie Lin,

Mohan Sridharan, Daniel Stronger, Gurushyam Hariharan

Department of Computer S
ien
es

The University of Texas at Austin

1 University Station C0500

Austin, Texas 78712-1188

fpstone,kdresner,selim,peggy,nkj,nate,kuhlmann,

ellie,smohan,stronger,thegurug�
s.utexas.edu

http://www.
s.utexas.edu/~AustinVilla

Te
hni
al Report UT-AI-TR-03-304

O
tober 6, 2003

Abstra
t

The UT Austin Villa RoboCup 2003 Four-Legged Team was a new entry in the ongoing series of

RoboCup legged league
ompetitions. The team development began in mid-January of 2003, at whi
h

time none of the team members had any familiarity with the Aibos. Without using any RoboCup-related

ode from other teams, we entered a team in the Ameri
an Open
ompetition at the end of April, and met

with some su

ess at the annual RoboCup
ompetition that took pla
e in Padova, Italy at the beginning

of July. In this report, we des
ribe both our development pro
ess and the te
hni
al details of its end

result, the UT Austin Villa team. The main
ontributions of this paper are (i) a roadmap for new teams

entering the
ompetition who are starting from s
rat
h, and (ii) full do
umentation of the algorithms

behind our approa
h with the goal of making them fully repli
able.

1

Contents

1 Introdu
tion 5

2 The Class 5

3 Initial Behaviors 6

4 Vision 7

4.1 Camera Settings . 8

4.2 Color Segmentation . 9

4.3 Region Building and Merging . 11

4.4 Obje
t Re
ognition with Bounding Boxes . 13

4.5 Position and Bearing of Obje
ts . 16

4.6 Visual Opponent Modeling . 16

5 Movement 17

5.1 Walking . 18

5.1.1 Basi
s . 18

5.1.2 Forward Kinemati
s . 18

5.1.3 Inverse Kinemati
s . 19

5.1.4 General Walking Stru
ture . 22

5.1.5 Omnidire
tional Control . 23

5.1.6 Tilting the Body Forward . 24

5.1.7 Des
ription of all the Parameters . 24

5.1.8 Tuning the Parameters . 25

5.1.9 Odometry Calibration . 26

5.2 General Movement . 27

5.2.1 Movement Module . 27

5.2.2 Movement Interfa
e . 29

5.2.3 High-Level Control . 30

6 Fall Dete
tion 31

7 Ki
king 31

7.1 The Initial Ki
k . 31

7.2 A General Ki
k Framework . 32

7.2.1 Creating the Criti
al A
tion . 32

7.2.2 Integrating the Criti
al A
tion into the Walk . 33

7.3 Head Ki
k . 33

7.4 Chest Push Ki
k . 34

7.5 Arms Together Ki
k . 34

7.6 Fall Forward Ki
k . 34

7.7 Yoshi Ki
k . 36

8 Lo
alization 36

8.1 Basi
 Parti
le Filtering Approa
h . 36

8.2 Motion Update . 36

8.3 Observation Update . 37

8.3.1 Landmark Memory . 37

8.3.2 Removing Obsolete Observations . 38

8.3.3 Merging Past Observations . 38

8.3.4 Updating Probabilities . 38

2

8.3.5 Resampling . 39

8.3.6 Two Bea
on Triangulation . 39

8.3.7 Three Bea
on Triangulation . 40

8.3.8 Random Movement . 41

8.4 Pose Estimation . 42

9 Communi
ation 42

9.1 Initial Robot-to-Robot Communi
ation . 42

9.2 TCP Gateway . 43

9.3 Message Types . 43

9.4 Queuing Messages . 44

10 General Ar
hite
ture 44

11 Global Map 45

11.1 Maintaining Lo
ation Data . 45

11.2 Information from Teammates . 46

11.3 Providing a High Level Interfa
e . 46

12 Behaviors 47

12.1 Goal S
oring . 47

12.1.1 Initial Solution . 48

12.1.2 In
orporating Lo
alization . 48

12.1.3 A Finite State Ma
hine . 50

12.2 Goalie . 51

12.2.1 Initial Solution . 51

12.2.2 In
orporating Lo
alization . 54

13 Coordination 55

13.1 Dibs . 55

13.1.1 Relevant Data . 55

13.1.2 Thrashing . 55

13.1.3 Stabilization . 55

13.1.4 Taking the Average . 56

13.1.5 Aging . 56

13.1.6 Calling the Ball . 56

13.1.7 Support Distan
e . 56

13.1.8 Phasing out Dibs . 57

13.2 Final Strategy . 57

13.2.1 Roles . 57

13.2.2 Supporter Behavior . 57

13.2.3 Defender Behavior . 58

13.2.4 Dynami
 Role Assignment . 58

14 UT Assist 60

14.1 General Ar
hite
ture . 60

14.1.1 Typi
al Usage . 60

14.2 Debugging Data . 61

14.2.1 Visual Output . 61

14.2.2 Lo
alization Output . 61

14.2.3 Mis
ellaneous Output . 62

14.3 Vision Calibration . 62

3

15 The Competitions 64

15.1 Ameri
an Open . 64

15.2 RoboCup 2003 . 66

15.3 The Challenge Events . 67

16 Con
lusions and Future Work 68

A Heuristi
s for the Vision Module 69

A.1 Region Merging and Pruning Parameters . 69

A.2 Tilt Angle Test . 70

A.3 Cir
le Method . 70

A.4 Bea
on Parameters . 72

A.5 Goal Parameters . 73

A.6 Ball Parameters . 74

A.7 Opponent Dete
tion Parameters . 74

A.8 Opponent Blob Likelihood Cal
ulation . 74

A.9 Coordinate Transforms . 75

4

1 Introdu
tion

RoboCup, or the Robot So

er World Cup, is an international resear
h initiative designed to advan
e the

�elds of roboti
s and arti�
ial intelligen
e by using the game of so

er as a substrate
hallenge domain. The

long-term goal of RoboCup is, by the year 2050, to build a full team of 11 humanoid robot so

er players

that
an beat the best human so

er team on a real so

er �eld [1℄.

RoboCup is organized into several di�erent leagues, in
luding a
omputer simulation league and two

leagues that use wheeled robots. This te
hni
al report
on
erns the development of a new team for the

Sony four-legged league

1

in whi
h all
ompetitors use identi
al Sony Aibo ERS-210A robots and the Open-R

software development kit.

2

Sin
e all teams use identi
al robots, the four-legged league amounts to essentially a software
ompetition.

In this report, we detail the development of a new team,
alled UT Austin Villa,

3

from the Department of

Computer S
ien
es at the University of Texas at Austin.

For the purposes of this report, we assume familiarity with the spe
i�
ations of the robots as well as the

rules of the RoboCup games. For full details see the legged league and Open-R sites footnoted above. Here

we des
ribe both our development pro
ess and the te
hni
al details of its end result, the UT Austin Villa

team. The main
ontributions of this report are

1. A roadmap for new teams entering the
ompetition who are starting from s
rat
h; and

2. Full do
umentation of the algorithms behind our approa
h with the goal of making them fully repli
able.

Our team development began in mid-January of 2003, at whi
h time none of the team members had

any familiarity with the Aibos. Without using any RoboCup-related
ode from any other teams, we entered

a team in the Ameri
an Open
ompetition at the end of April, and met with some su

ess at the annual

RoboCup
ompetition that took pla
e in Padova, Italy at the beginning of July. Although our team was not

one of the top few at the
ompetition, we view it as a great a

omplishment that we were able to develop

a
ompetitive team in su
h a short time. A primary goal of this report is to do
ument our development

pro
ess as a guide for new teams in the future.

Our e�ort began as a graduate resear
h seminar o�ered as a
lass during the Spring semester of 2003.

The following se
tion outlines the stru
ture of the
lass. At the end of that se
tion we outline the stru
ture

of the remainder of the paper.

2 The Class

The UT Austin Villa 2003 legged robot team began as a fo
used
lass e�ort during the Spring semester of

2003 at the University of Texas at Austin. Nineteen graduate students and one undergraduate were enrolled

in the
ourse CS395T: Multi-Robot Systems: Roboti
 So

er with Legged Robots.

4

All of the authors on this

paper parti
ipated in the
lass.

Students in the
lass studied past approa
hes, both as des
ribed in the literature and as re
e
ted in

publi
ly available sour
e
ode. However, we developed the entire
ode base from s
rat
h with the goals of

learning about all aspe
ts of robot
ontrol and of introdu
ing a
ompletely new
ode base to the
ommunity.

Class sessions were devoted to students edu
ating ea
h other about their �ndings and progress, as well

as
oordinating the integration of everybody's
ode. Just nine weeks after their initial introdu
tion to the

robots, the students already had preliminary working solutions to vision, lo
alization, fast walking, ki
king,

and
ommuni
ation.

The
on
rete goal of the
ourse was to have a
ompletely new working solution by the end of April so

that we
ould parti
ipate in the Ameri
an Open
ompetition, whi
h happened to fall during the last week

of the
lass. After that point, a subset of the students
ontinued working towards RoboCup 2003 in Padova.

1

http://www.openr.org/robo
up/index.html

2

http://openr.aibo.
om/

3

http://www.
s.utexas.edu/~AustinVilla

4

http://www.
s.utexas.edu/~pstone/Courses/395Tspring03

5

The
lass was organized into three phases. Initially, the students
reated simple behaviors with the sole

aim of be
oming familiar with Open-R.

Then, about two weeks into the
lass we shifted to phase two by identifying key subtasks that were

important for
reating a
omplete team. Those subtasks were:

� Vision;

� Movement;

� Fall Dete
tion;

� Ki
king;

� Lo
alization;

� Communi
ation;

� General Ar
hite
ture; and

� Coordination.

During this phase, students
hose one or more of these subtasks and worked in subgroups on generating

initial solutions to these tasks in isolation.

By about the middle of Mar
h, we were ready to swit
h to phase three, during whi
h we emphasized

\
losing the loop," or
reating a single uni�ed
ode-base that was
apable of playing a full game of so

er.

We
ompleted this integration pro
ess in time to enter a team in the RoboCup Ameri
an Open
ompetition

at the end of April.

The following se
tions
hroni
le our progress towards our RoboCup 2003 entry. All of the subtopi
s

addressed in phase two of the
lass
ontinued to be improved throughout our development pro
ess. For

larity of presentation, we present our eventual solutions in the same se
tions in whi
h we introdu
e our

initial approa
hes. In so doing, we make an e�ort to do
ument the evolution of ideas that led to our �nal

solutions, though in general we give full details only for our �nal solutions. Subsequent se
tions address our

�nal integration e�orts as well as our experien
es at the
ompetition.

The remainder of the report is organized as follows. In Se
tion 3 we do
ument some of the initial

behaviors that were generated during phase one of the
lass. Next we do
ument the output of some of

the subgroups that were formed in phase two of the
lass: vision in Se
tion 4; movement in Se
tion 5; fall

dete
tion in Se
tion 6; ki
king in Se
tion 7; lo
alization in Se
tion 8; and
ommuni
ation in Se
tion 9. In

ea
h of these se
tions we fully do
ument our solutions to the subtasks as of RoboCup 2003 in July. Next, we

do
ument the tasks that o

upied phase three of the
lass, namely those that allowed us to put together the

above modules into a
ohesive
ode base. In Se
tion 10 we des
ribe our general ar
hite
ture that
ombines

sensing, de
ision-making, and a
ting. In Se
tion 11 we introdu
e global maps, our main state representation.

Se
tion 12 des
ribes our so

er-playing behaviors su
h as goal-s
oring and goaltending. Then in Se
tion 13

we do
ument our methods for
oordinating the behaviors of the robots as a team. Se
tion 14 introdu
es our

debugging and development tool. Then in Se
tion 15 we summarize our experien
es at the Ameri
an Open

and RoboCup 2003
ompetitions, and Se
tion 16
on
ludes.

3 Initial Behaviors

The �rst task for the students in the
lass was to learn enough about the Aibo to be able to
ompile and

run any simple program on the Aibo.

The open sour
e release of Open-R
ame with several sample programs that
ould be
ompiled and loaded

onto the Aibo right away. These programs
ould do simple tasks su
h as:

L-Master-R-Slave: Cause the right legs to mirror manual movements of the left legs.

Ball-Tra
king-Head: Cause the head to turn su
h that the pink ball is always in the
enter of the visual

image (if possible).

PID
ontrol: Move a joint to a position spe
i�ed by the user by typing in a telnet window.

6

The students were to pi
k any program and modify it, or
ombine two programs in any way. The main

obje
tive was to make sure that everyone was familiar with the pro
ess for
ompiling and running programs

on the Aibos. Some of the resulting programs in
luded:

� Variations on L-Master-R-Slave in whi
h di�erent joints were used to
ontrol ea
h other. For example,

one student used the tail as the master to
ontrol all 4 legs, whi
h resulted in a swimming type motion.

Doing so required s
aling the range of the tail joints to those of the leg joints appropriately.

� Variations on Ball-Tra
king-Head in whi
h a di�erent
olor was tra
ked. Two students teamed up to

ause the robot to play di�erent sounds when it found or lost the ball.

� Variations on PID
ontrol su
h that more than one joint
ould be
ontrolled by the same input string.

After be
oming familiar with the
ompiling and uploading pro
ess, the next task for the students was to

be
ome more familiar with the Aibo's operating system and the Open-R interfa
e. To that end, they were

required to
reate a program that added at least one new subje
t-observer
onne
tion to the
ode.

5

The

students were en
ouraged to
reate a new Open-R obje
t from s
rat
h. Pattern-mat
hing from the sample

ode was en
ouraged, but
reating an obje
t as di�erent as possible from the sample
ode was preferred.

Some of the responses to this assignment in
luded:

� The ability to turn on and o� LEDs by pressing one of the robots' sensors.

� A primitive walking program that walks forward when it sees the ball.

� A program that alternates blinking the LEDs and
apping the ears.

After this assignment, whi
h was due after just the se
ond week of the
lass, the students were familiar

enough with the robots and the
oding environment to move on to their more dire
ted tasks with the aim

of
reating useful fun
tionality.

4 Vision

The ability of the robot to sense its environment is a prerequisite for any de
ision making on the Aibo. As

su
h, we pla
ed a strong emphasis on the vision
omponent of our team. The vision module pro
esses the

images taken by the CMOS
amera lo
ated on the Aibo. The module identi�es
olors in order to re
ognize

obje
ts, whi
h are then used to lo
alize the robot and to plan its operation.

Our visual pro
essing is done using the established pro
edure of
olor segmentation followed by obje
t

re
ognition. Color segmentation is the pro
ess of
lassifying ea
h pixel in an input image as belonging to

one of a number of prede�ned
olor
lasses based on the knowledge of the ground truth on a few training

images. Though the fundamental methods employed in this module have been applied previously (both in

RoboCup and in other domains), it has been built from s
rat
h like all the other modules in our team.

Hen
e, the implementation details provided are our own solutions to the problems we fa
ed along the way.

We have drawn some of the ideas from the previous te
hni
al reports of CMU [2℄ and UNSW [4℄. This

module
an be broadly divided into two stages: (i) low-level vision, where the
olor segmentation and region

building operations are performed, and (ii) high-level vision, wherein obje
t re
ognition is a

omplished and

the position and bearing of the various obje
ts in the visual �eld are determined. The following se
tions

present detailed des
riptions of these pro
esses. But �rst, we present a brief overview of the robot's CMOS

olor
amera.

5

A subje
t-observer
onne
tion is a pipe by whi
h di�erent Open-R obje
ts
an
ommuni
ate and be made interdependent.

For example, one Open-R obje
t
ould send a message to a se
ond obje
t whenever the ba
k sensor is pressed,
ausing the

se
ond obje
t to, for example, suspend its
urrent task or
hange to a new mode of operation.

7

4.1 Camera Settings

As mentioned previously, the robot
omes equipped with a CMOS
olor
amera that operates at a frame

rate of 25fps. Some of its other preset features are:

� Horizontal viewing angle: 57:6

Æ

.

� Verti
al viewing angle: 47:8

Æ

.

� Lens Aperture: 2.0.

� Fo
al length: 2.18mm.

We have partial
ontrol over three parameters, ea
h of whi
h has three options from whi
h to
hoose:

� WhiteBalan
e : We are provided with settings
orresponding to three di�erent light temperatures.

1. Indoor �mode: 2800K.

2. FL�mode: 4300K.

3. Outdoor �mode: 7000K.

This setting, as the name suggests, is basi
ally a
olor
orre
tion system to a

omodate varying lighting

onditions. The idea is that the
amera needs to identify the 'white point' (su
h that white obje
ts

appear white) so that the other
olors are mapped properly. We found that this setting does help in

in
reasing the separation between
olors and hen
e helps in better obje
t re
ognition. The optimum

setting depends on the 'light temperature' registered on the �eld (this in turn depends on the type of

light used, i.e, in
andes
ent,
uores
ent, et
.). For example, in our lab setting, we noti
ed a better

separation between orange and yellow with the Indoor setting than with the other settings. This helped

us in distinguishing the orange ball from the other yellow obje
ts on the �eld su
h as the goal and

se
tions of the bea
ons.

� ShutterSpeed :

1. Slow: 1=50se
.

2. Mid: 1=100se
 .

3. Fast: 1=200se
.

This setting denotes the time for whi
h the shutter of the
amera allows light to enter the
amera.

The higher settings (larger denominators) are better when we want to freeze the a
tion in an image.

We noti
ed that both the 'Mid' and the 'Fast' settings did reasonably well though the 'Fast' setting

seemed the best, espe
ially
onsidering that we want to
apture the motion of the ball. Here, the lower

settings would result in blurred images.

� Gain:

1. Low: 0dB.

2. Mid: 0dB .

3. High: 6dB.

This parameter sets the
amera gain. In this
ase, we did not noti
e any major di�eren
e in performan
e

among the three settings provided.

8

4.2 Color Segmentation

The image
aptured by the robot's
amera, in the YCbCr format, is a set of numbers, ranging from 0 to

255 along ea
h dimension, representing luminan
e (Y) and
hrominan
e (Cb, Cr). To enable the robot to

extra
t useful information from these images, the numbers have to be suitably mapped into an appropriate

olor spa
e. We retain the YCbCr format and \train" the robot, using a Nearest Neighbor (NNr) s
heme

[8, 4℄, to re
ognize and distinguish between 10 di�erent
olors, numbered as follows:

� 0 = pink,

� 1 = yellow,

� 2 = blue,

� 3 = orange,

� 4 = marker green,

� 5 = red,

� 6 = dark (robot) blue,

� 7 = white,

� 8 = �eld green,

� 9 = bla
k.

The motivation behind using the NNr approa
h is that the
olors under
onsideration overlap in the YCbCr

spa
e (some, su
h as orange and yellow, do so by a signi�
ant amount). Unlike other
ommon methods that

try to divide the
olor spa
e into
uboidal regions (or a
olle
tion of planes), the NNr s
heme allows us to

learn a
olor table where the individual blobs are de�ned more pre
isely.

The original
olor spa
e has three dimensions,
orresponding to the Y, Cb, and Cr
hannels of the input

image. To build the
olor table (used for
lassi�
ation of the subsequent images on the robot), we maintain

three di�erent types of
olor
ubes in the training phase: one Intermediate (IM)
olor
ube
orresponding

to ea
h
olor, a Nearest Neighbor
ube, and a Master (M)
ube (the names will make more sense after the

des
ription given below). To redu
e storage requirements, we operate at half the resolution, i.e. all the
ubes

have their numeri
al values s
aled to range from 0 to 127 along ea
h dimension. The
ells of the IM
ubes

are all initialized to zero, while those of the NNr
ube and the M
ube are initialized to 9 (the
olor bla
k,

also representing ba
kground).

Color segmentation begins by �rst training on a set of images using UT Assist, our Java-based inter-

fa
e/debugging tool (for more details see Se
tion 14). A robot is pla
ed at a few points on the �eld. Images

are
aptured and then transmitted over the wireless network to a remote
omputer running the Java-based

server appli
ation. The obje
ts of interest (goals, bea
ons, robots, ball, et
.) in the images are manually

\labeled" as belonging to one of the
olor
lasses previously de�ned, using the Image Segmenter (see Se
-

tion 14 for some pi
tures showing the labeling pro
ess). For ea
h pixel of the image that we label, the
ell

determined by the
orresponding YCbCr values (after transforming to half-resolution), in the
orresponding

IM
ube, is in
remented by 3 and all
ells a
ertain Manhattan distan
e away (within 2 units) from this

ell are in
remented by 1. For example, if we label a pixel on the ball orange in the image and this pixel

orresponds to a
ell (115; 35; 60) based on the intensity values of that pixel in the image, then in the orange

IM
ube this
ell is in
remented by 3 while the
ells su
h as (115; 36; 61) and (114; 34; 60) (among others)

whi
h are within a Manhattan distan
e of 2 units from this
ell, in the orange IM
ube alone, are in
remented

by 1. For another example, see Figure 1.

The training pro
ess is performed in
rementally, so at any stage we
an generate a single
ube (the NNr

ube is used for this purpose) that
an be used for segmenting the subsequent images. This helps us see how

\well-trained" the system is for ea
h of the
olors and serves as a feedba
k me
hanism that lets us de
ide

whi
h
olors need to be trained further. To generate the NNr
ube, we traverse ea
h
ell in the NNr
ube

and
ompare the values in the
orresponding
ell in ea
h of the IM
ubes and assign to this
ell the index of

the IM
ube that has the maximum value in this
ell, i.e., 8(p; q; r) 2 [0; 127℄,

NNrCube(y

p

;
b

q

;
r

r

) = arg max

i2[0;9℄

IM

i

(y

p

;
b

q

;
r

r

) (1)

9

Y

 Cb

 Cr

 0

 0 0 0

 0 0 0 0 0

 0 0

 0 0

 0 0

 0 0 0

 0 0

 0 0

 0

 0 0

 0 0

 0

 0 0

 0

 0

 0 0 0

 0 1

 3 1

 1

 0

 1

 1

 1

 1

 1 1

 1

 1 1

(a) (b) (
)

Figure 1: An example of the development of the
olor table, spe
i�
ally the IM
ube. Part(a) shows the

general
oordinate frame for the
olor
ubes. Part(b) shows a planar subse
tion of one of the IM
ubes

before labeling. Part(
) depi
ts the same subse
tion after the labeling of a pixel that maps to the
ell at the

enter of the subse
tion. Here only one plane is shown - the same operation o

urs a
ross all planes passing

through the
ell under
onsideration su
h that all
ells a
ertain Manhattan distan
e away from this
ell are

in
remented by 1.

When we use this
olor
ube to segment subsequent images, we use the NNr s
heme. For ea
h pixel in the

test image, the YCbCr values (transformed to half-resolution) are used to index into this NNr
ube. Then we

ompute the weighted average of the value of this
ell and those
ells that are a
ertain Manhattan distan
e

(we use 2-3 units) around it to arrive at a value that is set as the \numeri
al
olor" (i.e. the
olor
lass) of

this pixel in the test image. The weights are proportional to the Manhattan distan
e from the
entral
ell,

i.e., the greater this distan
e the smaller the signi�
an
e atta
hed to the value in the
orresponding
ell (see

Figure 2).

We do the training over several images (around 20-30) by pla
ing the robot at suitable points on the

�eld. The idea here is to train on images that
apture the bea
ons, goals, ball and the robots from di�erent

distan
es (and also di�erent angles for the ball) to a

ount for the variations in lighting along di�erent points

on the �eld. This is espe
ially important for the orange ball, whose
olor
ould vary from orange to yellow

to brownish-red depending on the amount of lighting available at that point. We also train with several

di�erent balls to a

ount for the fa
t that there is a marked variation in
olor among di�erent balls. At

the end of the training pro
ess, we have all the IM
ubes with the
orresponding
ells suitably in
remented.

The NNr operation is
omputationally intensive to perform on the robot's pro
essor. To over
ome this, we

pre
ompute the result of performing this operation (the Master
ube is used for this) from the
orresponding

ells in the NNr
olor
ube, i.e. we traverse ea
h
ell of the M Cube and
ompute the \Nearest Neighbor"

value from the
orresponding
ells in the NNr
ube. In other words, 8(p; q; r) 2 [0; 127℄ with a prede�ned

Manhattan distan
e ManDist 2 [3; 7℄,

MCube(y

p

;
b

q

;
r

r

) = arg max

i2[0;9℄

S
ore(i) (2)

where 8(k

1

; k

2

; k

3

) 2 [0; 127℄,

S
ore(i) =

0

�

X

k

1

;k

2

;k

3

�

ManDist� (j k

1

� p j + j k

2

� q j + j k

3

� r j)

1

A

j

(j k

1

� p j + j k

2

� q j + j k

3

� r j) < ManDist

^ NNrCube(y

k

1

;
b

k

2

;
r

k

3

) = i: (3)

10

 1

 1

 1

 1

 1

 1

 1

 1 1

 1

 1 1

 3

 1

 9 9 3

 3 3 3

 3 3

 3 3

 3 9 3 9

 3

 3 3

 9 3 9

 3 3 3 3

 3 3 3 3 3

 3 3 3

 9 3 3 9

 (a) (b)

Figure 2: An example of the weighted average applied to the NNr
ube (a 2-dimensional representative

example). Part (a) shows the values along a plane of the NNr
ube before the NNr s
heme is applied to the

entral
ell. Part (b) shows the same plane after the NNr update for its
entral
ell. We are
onsidering

ells within a Manhattan distan
e of 2 units along the plane. For this
entral
ell,
olor label 1 gets a vote

of 3+1+1+1 = 6 while label 3 gets a vote of 2+2+2+2+1+1+1+1+1 = 13 whi
h makes the
entral

ell's label = 3. This is the value that is set as the
lassi�
ation result. This is also the value that is stored

in the
ell in the M
ube that
orresponds to the
entral
ell.

This
ube is loaded onto the robot's memory sti
k. This then makes
olor segmentation on the robot a

simple pro
ess of table lookup, thereby making it a lot faster. (For an example of the
olor segmentation

pro
ess and the Master Cube generated at the end of it, see Figure 17).

One important point about our
olor segmentation s
heme is that we do not (at present) make an e�ort

to normalize the
ubes based on the number of pixels (of ea
h
olor) that we train on. So, if we labeled a

number of yellow pixels and a relatively smaller number of orange pixels, then we would be biased towards

yellow in the NNr
ube. This is not a problem if we are
areful during the training pro
ess and label regions

su
h that all
olors get (roughly) equal representation. We leave a prin
ipled treatment of the problem of

normalization to future resear
h.

4.3 Region Building and Merging

The Master
ube is loaded onto the robot's memory sti
k and this is used to segment the images that

the robot's
amera
aptures (in real-time). The next step in low-level pro
essing involves the formation of

re
tangular bounding boxes around
onne
ted regions of the same
olor. This in turn
onsists of run-length

en
oding (RLE) and region merging [7℄, whi
h are standard image pro
essing approa
hes used previously in

the RoboCup domain [2℄.

As ea
h image is segmented (during the �rst s
an of the image), left to right and top to bottom, it is

en
oded in the form of run-lengths along ea
h horizontal s
an line i.e. along ea
h line we store the (x, y)

position (the root node) where a sequen
e of a parti
ular
olor starts and the number of pixels until a sequen
e

of another
olor begins. The data
orresponding to ea
h run-length is stored in a separate data stru
ture

(
alled RunRegion) and the run-lengths are all stored as a linked list. Ea
h RunRegion data stru
ture also

stores the
orresponding
olor. Further, there is a bounding box
orresponding to ea
h RunRegion/run-

length, whi
h during the �rst pass is just the run-length itself, but has additional properties su
h as the

number of run-lengths en
losed, the number of a
tual pixels en
losed, the upper left (UL) and lower right

(LR)
orners of the box et
. Ea
h run-length has a pointer to the next run-length of the same
olor (null if

none exists) and an index
orresponding to the bounding box that it belongs to, while ea
h bounding box has

11

a pointer to the list of run-lengths that it en
loses. This fa
ilitates the easy merging of two run-lengths (or

a bounding box
ontaining several run-lengths with a single run-length or two bounding boxes ea
h having

more that one run-length). The RunRegion data stru
ture and the BoundingBox data stru
ture are given

in Table 1.

// The Runregion data structure definition.

struct RunRegion {

};

// The BoundingBox data structure definition.

struct BoundingBox {

 int LRx;
 int LRy;
 bool lastBox;
 int valid;

 int rrcount;

 RunRegion* listRR;
 RunRegion* eoList;

};

 int color; //color associated with the run region.
 RunRegion* root; //the root node of the runregion.

 int xLoc; //x location of the root node.
 int yLoc; //y location of the root node.
 int runLength; // number of run lengths with this region.
 int boundingBox; //the bounding box that this region belongs to.

 RunRegion* nextRun;
 RunRegion* listNext; //pointer to the next runregion in the current run length.

 BoundingBox* prevBox; //pointer to the previous bounding box.
 BoundingBox* nextBox; // pointer to the next bounding box.
 int ULx; //upper left corner x coordinate.
 int ULy; //upper left corner y coordinate.

 int numRunLengths; //number of runlengths associated with this bounding box.
 int numPixels; //number of pixels in this bounding box.

 int color; //color cooresponding to this bounding box.

 float prob; //probability corresponding to this bounding box.

Table 1: This table shows the basi
 run region and bounding box data stru
tures with whi
h we operate.

Next, we need to merge the run-lengths/bounding boxes
orresponding to the same obje
t together under

the assumption that an obje
t in the image will be represented by
onne
ted run-lengths. In the se
ond pass,

we pro
eed along the run-lengths (in the order in whi
h they are present in the linked list) and
he
k for

pixels of the same
olor immediately below ea
h pixel over whi
h the run-length extends, merging run-lengths

of the same
olor that have signi�
ant overlap (the threshold number of pixel overlap is de
ided based on

experimentation: see Appendix A.1). When two run-lengths are to be merged, one of the bounding boxes

is deleted while the other's properties (root node, number of run-lengths, size et
) are suitably modi�ed

to in
lude both the bounding boxes. This is a

omplished by moving the
orresponding pointers around

appropriately. By in
orporating suitable heuristi
s, we remove bounding boxes that are not signi�
antly

large or dense enough to represent an obje
t of interest in the image, and at the end of this pass, we end

up with a number of
andidate bounding boxes, ea
h representing a blob of one of the nine
olors under

onsideration. The bounding boxes
orresponding to ea
h
olor are linked together in a separate linked list,

whi
h (if required) is sorted in des
ending order of size for ease of further pro
essing. Details of the heuristi
s

used here
an be found in Appendix A.1.

12

4.4 Obje
t Re
ognition with Bounding Boxes

On
e we have bounding boxes of the various
olors arranged in separate lists, we
an pro
eed to high-level

vision, i.e., the dete
tion of obje
ts of interest in the robot's image frame. The obje
ts that we primarily

need to identify in the visual �eld are the ball, the two goals, the �eld markers (other than the goals) and the

opponents. This stage takes as input the lists of bounding boxes and provides as output a
olle
tion of obje
ts

(stru
tures
alled the VisionObje
ts), one for ea
h dete
ted obje
t, whi
h are then used for determining the

position and bearing of these obje
ts with respe
t to the robot. This information is in turn used in the

lo
alization module (see Se
tion 8) to
al
ulate the robot's position in the �eld
oordinates. To identify

these obje
ts we introdu
e some
onstraints and heuristi
s, some of whi
h are based on the known geometry

of the environment while others are parameters that we identi�ed by experimentation. We �rst do
ument

the basi
 pro
ess used to sear
h for the various obje
ts, and at the end of the se
tion we provide a des
ription

of the
onstraints and heuristi
s used.

We start with the goals be
ause they are generally the largest blobs of the
orresponding
olors and on
e

found they
an be used to eliminate spurious blobs during bea
on and ball dete
tion. We sear
h through the

lists of bounding boxes for
olors
orresponding to the goals (blue and yellow) on the �eld, given
onstraints

on size, aspe
t ratio and density Furthermore,
he
ks are in
luded to ensure that spurious blobs (noisy

estimates on the �eld, blobs
oating in the air, et
.) are not taken into
onsideration. On the basis of these

onstraints we
ompare the blob found in the image (and identi�ed as a goal) with the known geometry of

the goal. This provides some sort of likelihood measure, and a VisionObje
t is
reated to store this and the

information of the
orresponding bounding box. (Table 2 displays the data stru
tures used for this purpose)

struct VisionObjects{
 int NumberOfObjects; //number of vision obejcts in curretn frame.
 BBox* ObjectInfo; //array of objects in view.
}

struct BBox {

 Point ul; //upper left point of the bounding box.
 Point lr; //lower right point of the bounding box.

}

}
 double y; //y coordinate.
 double x; //x coordinate.
struct Point {

int ObjID; //object ID.

double prob; //likelihood corresponding to this bounding box/object.

Table 2: This table shows the basi
 VisionObje
t and asso
iated data stru
tures with whi
h we operate.

After sear
hing for the goals, we sear
h for the orange ball, probably the most important obje
t in

the �eld. We sort the orange bounding boxes in des
ending order of size and sear
h through the list (not

onsidering very small ones), on
e again based on heuristi
s on size, aspe
t ratio, density, et
. To deal with

ases with partial o

lusions, whi
h is quite
ommon with the ball on the �eld, we use the \
ir
le method" to

estimate the equation of the
ir
le that best des
ribes the ball (see Appendix A.3 for details). Basi
ally this

involves �nding three points on the edge of the ball and �nding the equation of the
ir
le passing through the

three points. This method seems to give us an a

urate estimate of the ball size (and hen
e the ball distan
e)

in most
ases. In the
ase of the ball, in addition to the
he
k that helps eliminate spurious blobs (
oating

in the air),
he
ks have to be in
orporated to ensure that minor mis
lassi�
ation in the segmentation stage

(explained below) do not lead to dete
tion of the ball in pla
es where it does not exist.

13

Next, we ta
kle the problem of �nding the bea
ons (six �eld markers, ex
luding the goals). The identi�-

ation of bea
ons is important in that the a

ura
y of lo
alization of the robot depends on the determination

of the position and bearing of the bea
ons (with respe
t to the robots) whi
h in turn depends on the proper

determination of the bounding boxes asso
iated with the bea
ons. Sin
e the
olor pink appears in all bea-

ons, we use that as the fo
us of our sear
h. Using suitable heuristi
s to a

ount for size, aspe
t ratio,

density, et
. we mat
h ea
h pink blob with blue, green, or yellow blobs to determine the bea
ons. We ensure

that only one instan
e of ea
h bea
on (the most likely one) is retained. Additional tests are in
orporated

to remove spurious bea
ons: those that appear to be on the �eld or in the opponents,
oating in the air,

inappropriately huge or tiny, et
. For details, see Appendix A.4.

After this �rst pass, if the goals have not been found, we sear
h through the
andidate blobs of the

appropriate
olors with a set of redu
ed
onstraints to determine the o

urren
e of the goals (whi
h results

in a redu
ed likelihood estimate as we will see below). This is useful when we need to identify the goals at

a distan
e, whi
h helps us lo
alize better, as ea
h edge of the goal serves as an additional marker for the

purpose of lo
alization.

We found that the goal edges were mu
h more reliable as inputs to the lo
alization module than were

the goal
enters. So, on
e the goals are dete
ted, we determine the edges of the goal based on the edges of

the
orresponding bounding boxes. Of
ourse, we in
lude proper bu�ers at the extremities of the image to

ensure that we dete
t the a
tual goal edges and not the 'arti�
ial edges' generated when the robot is able to

see only a se
tion of the goal (as a result of its view angle) and the sides of the trun
ated goal's bounding

box are mistaken to be a
tual edges.

Next, we present a brief des
ription of some of the heuristi
s employed in the dete
tion of ball, goals,

bea
ons and opponents. We begin by listing the heuristi
s that are
ommon to all obje
ts and then also list

those that are spe
i�
 to goals, ball and/or bea
ons. For more detailed explanations on some methods and

parameters for individual test see the
orresponding appendi
es.

� Spurious blob elimination: A simple
al
ulation using the tilt angle of the robot's head is used to

determine and hen
e eliminate spurious (bea
on, ball and/or goal) blobs that are too far down or too

high up in the image plane. See Appendix A.2 for the a
tual thresholds and
al
ulations.

� Likelihood Cal
ulation: For ea
h obje
t of interest in the robot's visual �eld, we asso
iate a measure

whi
h des
ribes how sure we are of our estimation of the presen
e of that obje
t in the
urrent image

frame. The easiest way to a

omplish this would be to
ompare the aspe
t ratio (the ratio of the height

to the width) of the bounding boxes that identify these obje
ts, to the a
tual known aspe
t ratio of the

obje
ts in the �eld. For example, the goal has an aspe
t ratio of 1 : 2 in the �eld, and we
an
ompare

the aspe
t ratio of the bounding box that has been dete
ted as the goal with this expe
ted ratio. We

an
laim that the
loser these two values are, the more sure we are of our estimate and hen
e higher

is the likelihood.

� Bea
on spe
i�

al
ulations:

1. To remove spurious bea
ons, we ensure that the two se
tions that form the bea
on are of
ompa-

rable size, i.e. that ea
h se
tion is at least half as large and half as dense as the other se
tion.

2. We ensure that the separation between the two se
tions is within a small threshold, whi
h is

usually 2� 3 pixels.

3. We
ompare the aspe
t ratio of bounding box
orresponding to the bea
on in the image to the

a
tual aspe
t ratio (2 : 1 :: height : width), whi
h helps remove
andidate bea
ons that are too

small or disproportionately large.

4. Aspe
t ratio, as mentioned above is further used to determine an estimate of the likelihood of ea
h

andidate bea
on that also helps
hoose the \most probable"
andidate when there are multiple

o

urren
es of the same bea
on. Only bea
ons with a likelihood above a threshold are retained

and used for lo
alization
al
ulations. This helps ensure that false positives, generated by lighting

variations and/or shadows, do not
ause major problems in lo
alization.

14

Note: for sample threshold values, see Appendix A.4.

� Goal spe
i�

al
ulations:

1. We use the `tilt-angle test' (des
ribed in detail in Appendix A.2)

2. We use a similar aspe
t ratio test for the goals, too. In the
ase of the goals we also look for

suÆ
iently high density (the ratio of the number of pixels of the expe
ted
olor to the area of the

blob), the number of run-lengths en
losed, and a minimum number of pixels. All these thresholds

were determined experimentally, and
hanging these thresholds
hanges the distan
e from whi
h

the goal
an be dete
ted and the a

ura
y of dete
tion. For example, lowering these thresholds

an lead to false positives.

3. The aspe
t ratio is used to determine the likelihood, and the
andidate is a

epted i� it has a

likelihood measure above a prede�ned minimum.

4. When doing a se
ond pass for the goal sear
h, we relax the
onstraints slightly but proportionately

a lower likelihood measure gets assigned to the goal, if dete
ted.

Note: for sample threshold values, see Appendix A.5.

� Ball spe
i�

al
ulations:

1. We use the `tilt-angle test' to eliminate spurious blobs from
onsideration.

2. In most
ases, the ball is severely o

luded, pre
luding the use of the aspe
t ratio test. Nonetheless,

we �rst sear
h for an orange obje
t with a high density and an aspe
t ratio (1:1) that would dete
t

the ball if it is seen
ompletely and not o

luded.

3. If the ball is not found with these tight
onstraints, we relax the aspe
t ratio
onstraint and

in
lude additional heuristi
s (e.g. if the ball is
lose, even if it is partially o

luded, it should have

a large number of run-lengths and pixels) that help dete
t a bounding box around the partially

o

luded ball. These heuristi
s and asso
iated thresholds were determined experimentally.

4. If the yellow goal is found, we ensure that the
andidate orange ball does not o

ur within it and

above the ground (whi
h
an happen sin
e yellow and orange are
lose in
olor spa
e).

5. We
he
k to make sure that the orange ball is found lower than the lower-most bea
on in the

urrent frame. Also, the ball
annot o

ur above the ground, or within or slightly below the

bea
on. The latter
an o

ur if the white and/or yellow portions of the bea
on are mis
lassi�ed

as orange.

6. We use the \
ir
le method" to dete
t the a
tual ball size. But we also in
lude
he
ks to ensure

that in
ases where this method fails and we end up with disproportionately huge or very small

ball estimates (thresholds determined experimentally), we either keep the estimates we had before

employing the
ir
le method (and extend the bounding box along the shorter side to form a square

to get the
losest approximation to the ball) or reje
t the ball estimate in the
urrent frame. The

hoi
e depends on the extent to whi
h the estimated \ball" satis�es experimental thresholds.

Note: for sample threshold values, see Appendix A.6.

Finally, we
he
k for opponents in the
urrent image frame. As in the previous
ases, suitable heuristi
s

are employed both to weed out the spurious
ases and to determine the likelihood of the estimate. To

identify the opponents, we �rst sort the blobs of the
orresponding
olor in des
ending order of size, with a

minimum threshold on number of pixels and run-lengths. We in
lude a relaxed version of the aspe
t ratio

test and stri
t tilt angle tests (an \opponent" blob
annot o

ur mu
h lower or mu
h higher than the horizon

when the robot's head has very little tilt and roll) to further remove spurious blobs (see Appendix A.2 and

Appendix A.7). Ea
h time an opponent blob (that satis�es these thresholds) is dete
ted, the robot tries to

merge it with one of its previous estimates based on thresholds. If it does not su

eed and it has less than

15

4 valid (previous) estimates it adds this estimate to the list of opponents. At the end of this pro
ess, ea
h

robot has a list that stores the four largest bounding boxes (that satisfy all these tests) of the
olor of the

opponent with suitable likelihood estimates that are determined based on the size of the bounding boxes

(see Appendix A.8). Further pro
essing of opponent estimates using the estimates from other teammates

et
 is des
ribed in detail in the se
tion on visual opponent modeling (Se
tion 4.6). On
e pro
essing of the

urrent visual frame is
ompleted, the dete
ted obje
ts, ea
h stored as a VisionObje
t is passed through the

Brain to the GlobalMap module wherein the VisionObje
ts are operated upon using Lo
alization routines.

4.5 Position and Bearing of Obje
ts

The obje
t re
ognition module returns a set of data stru
tures, one for ea
h \legal" obje
t in the visual

frame. Ea
h obje
t also has an estimate of its likelihood, whi
h represents the un
ertainty in our per
eption

of the obje
t. The next step (the �nal step in high-level vision) is to determine the distan
e to ea
h su
h

obje
t from the robot and the bearing of the obje
t with respe
t to the robot. In our implementation,

this estimation of distan
e and bearing of all obje
ts in the image, with respe
t to the robot, is done as

a prepro
essing step when the lo
alization module ki
ks into a
tion during the development of the global

maps. Sin
e this is basi
ally a vision-based pro
ess we des
ribe it here rather than in the se
tion (Se
tion 8)

on lo
alization. As ea
h frame of visual input is pro
essed, the robot has a

ess to the tilt, pan, and roll

angles of its
amera from the appropriate sensors and these values give us a simple transform that takes us

from the 3D world to the 2D image frame. Using the known proje
tion of the obje
t in the image plane and

the geometry of the environment (the expe
ted sizes of the obje
ts in the robot's environment) we
an arrive

at estimates for the distan
e and bearing of the obje
t relative to the robot. The known geometry is used to

arrive at an estimate for the varian
es
orresponding to the distan
e and the bearing. Suppose the distan
e

and angle estimates for a bea
on are d and �. Then the varian
es in the distan
e and bearing estimates are

estimated as:

varian
e

d

=

�

1

b

p

�

� (0:1d) (4)

where

�

1

b

p

�

is the likelihood of the obje
t returned by vision.

varian
e

�

= tan

�1

�

bea
on

r

d

�

(5)

where bea
on

r

is the a
tual radius of the bea
on in the environment.

By similar
al
ulations, we
an determine the distan
e and bearing (and the
orresponding varian
es) of

the various obje
ts in the robot's �eld of view.

4.6 Visual Opponent Modeling

Another important task a

omplished using the image data is that of opponent modeling. As des
ribed

in Se
tion 4.4, ea
h robot provides a maximum of four best estimates of the opponent blobs based on the

urrent image frame. To arrive at an eÆ
ient estimate of the opponents (lo
ation of the opponents relative

to the robot and hen
e with respe
t to the global frame), ea
h robot needs to merge its own estimates with

those
ommuni
ated by its teammates. As su
h this pro
ess is a

omplished during the development of the

global maps (Se
tion 11) but sin
e the operation interfa
es dire
tly with the output from the vision module,

it is des
ribed here.

When opponent blobs are identi�ed in the image frame, the vision module returns the bounding boxes

orresponding to these blobs. We noti
ed that though the shape of the blob and hen
e the size of the

bounding box
an vary depending on the angle at whi
h the opponent robot is viewed (and its relative

orientation), the height of the bounding box is mostly within a
ertain range. We use this information to

arrive at an estimate of the distan
e of the opponent and use the
entroid of the bounding box to estimate

the bearing of the
andidate opponent with respe
t to the robot (see Se
tion 4.5 for details on estimation of

16

distan
e and bearing of obje
ts). These values are used to �nd the opponent's (x, y) position relative to the

robot and hen
e determine the opponent's global (x, y) position (see Appendix A.9 for details on transforms

from lo
al to global
oordinates and vi
e versa). Varian
e estimates for both the x and the y positions are

obtained based on the
al
ulated distan
e and the likelihood asso
iated with that parti
ular opponent blob.

For example, let d and � be the distan
e and bearing of the opponent relative to the robot. Then, in the

robot's lo
al
oordinate frame (determined by the robot's position and orientation), we have the relative

positions as:

rel

x

= d �
os(�); rel

y

= d � sin(�)

From these we obtain the global positions as:

�

glob

x

glob

y

�

= T

global

lo
al

�

�

rel

x

rel

y

�

(6)

where T

global

lo
al

is the 2D-transformation matrix from lo
al to global
oordinates.

For the varian
es in the positions, we use a simple approa
h:

var

x

= var

y

=

1

Opp

prob

� (0:1d) (7)

where the likelihood of the opponent blob, Opp

prob

is determined by heuristi
s (see Appendix A.8).

If we do not have any previous estimates of opponents from this or any previous frame, we a

ept

this estimate and store it in the list of known opponent positions. If any previous estimates exist, we try

to merge them with the present estimate by
he
king if they are
lose enough (based on heuristi
s). All

merging is performed assuming Gaussian distributions. The basi
 idea is to
onsider the x and y position as

independent Gaussians (with the positions as the means and the asso
iated varian
es) and merge them (for

more details see Se
tion 8.3.3 and [10℄). If merging is not possible and we have fewer than four opponent

estimates, we treat this as a new opponent estimate and store it as su
h in the opponents list. But if four

opponent estimates already exist, we try to repla
e one of the previous estimates (the one with the maximum

varian
e in the list of opponent estimates and with a varian
e higher than the new estimate) with the new

estimate. On
e we have traversed through the entire list of opponent bounding boxes presented by the vision

module, we go through our
urrent list of opponent estimates and degrade all those estimates that were not

updated, i.e. not involved in merging with any of the estimates from the
urrent frame (for more details on

the degradation of estimates, see the initial portions of Se
tion 11 on global maps). When ea
h robot shares

its Global Map (see Se
tion 11) with its teammates, this data gets
ommuni
ated.

When the robot re
eives data from its teammates, a similar pro
ess is in
orporated. The robot takes

ea
h
urrent estimate (i.e. one that was updated in the
urrent
y
le) that is
ommuni
ated by a teammate

and tries to merge it with one of its own estimates. If it fails to do so and it has fewer than four opponent

estimates, it a

epts the
ommuni
ated estimate as su
h and adds it to its own list of opponent estimates.

But if it already has four opponent estimates, it repla
es its oldest estimate (the one with the largest varian
e

whi
h is larger than the varian
e of the
ommuni
ated estimate too) with the
ommuni
ated estimate. If

this is not possible, the
ommuni
ated estimate is ignored.

This pro
edure, though simple, gives reliable results in nearly all situations on
e the degradation and

merging thresholds are properly tuned. It was used both during games and in one of the
hallenge tasks (see

Se
tion 15.3) during RoboCup and the performan
e was good enough to walk from one goal to the other

avoiding all seven robots pla
ed in its path.

5 Movement

Enabling the Aibos to move pre
isely and qui
kly is equally as essential to the overall RoboCup task as

the vision task. In this se
tion, we introdu
e our approa
h to Aibo movement, in
luding walking and the

interfa
es from walking to the higher level
ontrol modules.

17

The Aibo
omes with a stable but slow walk. From wat
hing the videos of past RoboCups, and from

reading the available te
hni
al reports, it be
ame
lear that a fast walk is an essential part of any RoboCup

team. The walk is perhaps the most feasible
omponent to borrow from another team's
ode base, sin
e it

an be separated out into its own module. Nonetheless, we de
ided to
reate our own walk in the hopes

of ending up with something at least as good, if not better, than that of other teams, while retaining the

ability to �ne tune it on our own.

The movement
omponent of our team
an be separated into two parts. First, the walking motion itself,

and se
ond, an interfa
e module between the low level
ontrol of the joints (in
luding both walking and

ki
king) and the de
ision-making
omponents.

5.1 Walking

This se
tion details our approa
h to enabling the Aibos to walk.

5.1.1 Basi
s

At the lowest level, walking is e�e
ted on the Aibo by
ontrolling the joint angles of the legs. Ea
h of the four

legs has three joints known as the rotator, abdu
tor, and knee. The rotator is a shoulder joint that rotates

the entire leg (in
luding the other two joints) around an axis that runs horizontally from left to right. The

abdu
tor is the shoulder joint responsible for rotating the leg out from the body. Finally, the knee allows the

lower link of the leg to bend forwards or ba
kwards, although the knees on the front legs primarily bend the

feet forwards while the ones on the ba
k legs bend primarily ba
kwards. These rotations will be des
ribed

more pre
isely in the se
tion on forward kinemati
s.

Ea
h joint is
ontrolled by a PID me
hanism. This me
hanism takes as its inputs P, I, and D gain settings

for that joint and a desired angle for it. An online tutorial about PID
ontrol
an be found at [11℄. The robot

ar
hite
ture
an pro
ess a request for ea
h of the joints at a rate of at most on
e every eight millise
onds. We

have always requested joint values at this maximum allowed frequen
y. Also, the Aibo model information

lists re
ommended settings for the P, I, and D gains for ea
h joint. We have not thoroughly experimented

with any settings aside from the re
ommended ones and use only the re
ommended ones for everything that

is reported here.

The problem of
ompelling the robot to walk is greatly simpli�ed by a te
hnique
alled inverse kinemati
s.

This te
hnique allows the traje
tory of a leg to be spe
i�ed in terms of a three-dimensional traje
tory for the

foot. The inverse kinemati
s
onverts the lo
ation of the foot into the
orresponding settings for the three

joint angles. A pre
ursor to deriving inverse kinemati
s formulas is having a model of the forward kinemati
s,

the fun
tion that takes the three joint angles to a three-dimensional foot position. This is e�e
tively our

mathemati
al model of the leg.

5.1.2 Forward Kinemati
s

For ea
h leg, we de�ne a three-dimensional
oordinate system whose origin is that leg's shoulder. In these

oordinate systems, positive x is to the robot's right, positive y is the forward dire
tion, and positive z is

up. Thus, when a positive angle is requested from a
ertain type of joint, the dire
tion of the resulting

rotation may vary from leg to leg. For example, a positive angle for the abdu
tor of a right leg rotates the

leg out from the body to the right, while a positive angle for a left leg rotates the leg out to the left. We

will des
ribe the forward and inverse kinemati
s for the front right leg, but be
ause of the symmetry of the

Aibo, the inverse kinemati
s formulas for the other legs
an be attained simply by �rst negating x or y as

ne
essary.

The unit of distan
e in our
oordinate system is the length of one link of any leg, i.e. from the shoulder to

the knee, or from the knee to the foot. This may seem a strange statement, given that, physi
ally speaking,

the di�erent links of the robot's legs are not exa
tly the same length. However, in our mathemati
al model of

the robot, the links are all the same length. This serves to simplify our
al
ulations, although it is admittedly

an ina

ura
y in our model. We argue that this ina

ura
y is overshadowed by the fa
t that we are not

18

modeling the leg's foot, a
umbersome una
tuated aestheti
 appendage. As far as we know, no team has yet

tried to model the foot.

We
all the rotator, abdu
tor, and knee angles J

1

, J

2

, and J

3

respe
tively. The goal of the forward

kinemati
s is to de�ne the fun
tion from J = (J

1

; J

2

; J

3

) to p = (x; y; z), where p is the lo
ation of the

foot a

ording to our model. We
all this fun
tion K

F

(J). We start with the fa
t that when J = (0; 0; 0)

K

F

(J) = (0; 0;�2), whi
h we
all p

0

. This
orresponds to the situation where the leg is extended straight

down. In this base position for the leg, the knee is at the point (0; 0;�1). We will des
ribe the �nal lo
ation

of the foot as the result of a series of three rotations being applied to this base position, one for ea
h joint.

First, we asso
iate ea
h joint with the rotation it performs when the leg is in the base position. The

rotation asso
iated with the knee, K(q;�), where q is any point in spa
e, is a rotation around the line y = 0,

z = �1,
ounter
lo
kwise through an angle of � with the x-axis pointing towards you. The abdu
tor's

rotation, A(q;�), goes
lo
kwise around the y-axis. Finally, the rotator is R(q;�), and it rotates
ounter-

lo
kwise around the x-axis. In general (i.e. when J

1

and J2 are not 0),
hanges in J

2

or J

3

do not a�e
t

p by performing the
orresponding rotation A or K on it. However, these rotations are very useful be
ause

the forward kinemati
s fun
tion
an be de�ned as

K

F

(J) = R(A(K(p

0

; J

3

); J

2

); J

1

): (8)

This formulation is based on the idea that for any set of angles J , the foot
an be moved from p

0

to its

�nal position by rotating the knee, abdu
tor, and rotator by J

3

, J

2

, and J

1

respe
tively, in that order. This

formulation works be
ause when the rotations are done in that order they are always the rotations K, A,

and R. A s
hemati
 diagram of the Aibo after ea
h of the �rst two rotations is shown in Figure 3.

It is never ne
essary for the robot to
al
ulate x, y, and z from the joint angles, so the above equation

need not be implemented on the Aibo. However, it is the starting point for the derivation of the Inverse

Kinemati
s, whi
h are
onstantly being
omputed while the Aibo is walking.

5.1.3 Inverse Kinemati
s

Inverse kinemati
s is the problem of �nding the inverse of the forward kinemati
s fun
tion K

F

, K

I

(q). With

our model of the leg as des
ribed above, the derivation of K

I

an be done by a relatively simple
ombination

of geometri
 analysis and variable elimination.

The angle J

3

an be determined as follows. First we
al
ulate d, the distan
e from the shoulder to the

foot, whi
h is given by

d =

p

x

2

+ y

2

+ z

2

: (9)

Next, note that the shoulder, knee, and foot are the verti
es of an isos
eles triangle with sides of length

1, 1, and d with
entral angle 180� J3. This yields the formula

J

3

= 2
os

�1

�

d

2

�

: (10)

The inverse
osine here may have two possible values within the range for J

3

. In this
ase we always

hoose the positive one. While there are some points in three-dimensional spa
e that this ex
ludes (be
ause

of the joint ranges for the other joints), those points are not needed for walking. Furthermore, if we allowed

J

3

to sometimes be negative, it would be very diÆ
ult for our fun
tion K

I

to be
ontinuous over its entire

domain.

To
ompute J

2

, we must �rst write out an expression for K(p

0

; J

3

). It is (0; sinJ

3

; 1+
osJ

3

). This is the

position of the foot in Figure 3a. Then we
an isolate the e�e
t of J

2

as follows. Sin
e the rotation R is with

respe
t to the x-axis, it does not a�e
t the x-
oordinate. Thus we
an make use of the fa
t that the K

F

(J),

whi
h is de�ned to be R(A(K(p

0

; J

3

); J

2

); J

1

) (Equation 8), has the same x-
oordinate as A(K(p

0

; J

3

); J

2

).

Plugging in our expression for K(p

0

; J

3

), we get that

A(K(p

0

; J

3

); J

2

) = A((0; sinJ

3

; 1 +
osJ

3

); J

2

): (11)

19

+z

+y

−z −z

p0

J3 J3p0K(,)

J2

0 J3p J2A(K(,),)

(0,0,−1)

(0,0,−2)

+z

+x

b)a)

Figure 3: S
hemati
 drawings of the Aibo a

ording to our kinemati
s model. a) This is a side view of

the Aibo after rotation K has been performed on the foot. b) In this front view, rotation A has also been

performed.

20

Sin
e A is a rotation around the y-axis,

A(K(p

0

; J

3

); J

2

) = (sinJ

2

(1 +
osJ

3

); sinJ

3

;
osJ

2

(1 +
osJ

3

)): (12)

Setting x (whi
h is de�ned to be the x-
oordinate of K

F

(J)) equal to the x-
oordinate here and solving

for J

2

gives us

J

2

= sin

�1

�

x

1 +
osJ

3

�

: (13)

Note that this is only possible if x � 1 +
os(J

3

). Otherwise, there is no J

2

that satis�es our
onstraint

for it, and, in turn, no J su
h that F

K

(J) = q. This is the impossible sphere problem, whi
h we dis
uss in

more detail below. The position of the foot after rotations K and A is depi
ted in Figure 3b.

Finally, we
an
al
ulate J

1

. Sin
e we know y and z before and after the rotation R, we
an use the

di�eren
e between the angles in the y-z plane of the two (y; z)'s. The C++ fun
tion atan2(z; y) gives us the

angle of the point (y; z), so we
an
ompute

J

1

= atan2(z; y)� atan2(
osJ

2

(1 +
osJ

3

); sinJ

3

): (14)

The result of this subtra
tion is normalized to be within the range for J

1

. This
on
ludes the derivation

of J

1

through J

3

from x, y, and z. The
omputation itself
onsists simply of the
al
ulations in the four

equations (9), (10), (13), and (14).

It is worth noting that expressions for J

1

, J

2

, and J

3

are never given expli
itly in terms of x, y, and z.

Su
h expressions would be very
onvoluted, and they are unne
essary be
ause the serial
omputation given

here
an be used instead. Furthermore, we feel that this method yields some insight into the relationships

between the legs joint angles and the foot's three-dimensional
oordinates.

There are many points q, in three-dimensional spa
e, for whi
h there are no joint angles J su
h that

F

K

(J) = q. For these points, the inverse kinemati
s formulas are not appli
able. One
ategory of su
h

points is intuitively
lear: the points whose distan
e from the origin is greater than two. These are impossible

lo
ations for the foot be
ause the leg is not long enough to rea
h them from the shoulder. There are also

many regions of spa
e that are ex
luded by the angle ranges of the three joints. However, there is one

unintuitive, but important, unrea
hable region, whi
h we
all the impossible sphere. The impossible sphere

has a radius of 1 and is
entered at the point (1; 0; 0). The following analysis explains why it is impossible

for the foot to be in the interior of this sphere.

Consider a point (x; y; z) in the interior of the illegal sphere. This means that

(x� 1)

2

+ y

2

+ z

2

< 1

x

2

� 2x+ 1+ y

2

+ z

2

< 1

x

2

+ y

2

+ z

2

< 2x:

Substituting d for

p

x

2

+ y

2

+ z

2

and dividing by two gives us

d

2

2

< x: (15)

Sin
e J

3

= 2
os

�1

�

d

2

�

(Equation (10)),
os

J

3

2

=

d

2

, so by the double angle formula
osJ

3

=

d

2

2

� 1, or

d

2

2

= 1 +
osJ

3

. Substituting for

d

2

2

, we get

x > 1 +
osJ

3

: (16)

This is pre
isely the
ondition, as dis
ussed above, under whi
h the
al
ulation of J

2

breaks down. This

shows that points in the illegal sphere are not in the range of F

K

.

O

asionally, our parameterized walking algorithm requests a position for the foot that is inside the

impossible sphere. When this happens, we proje
t the point outward from the
enter of the sphere onto its

21

C

4

y

z

2 � C

2

Figure 4: The foot tra
es a half ellipse as the robot walks forward.

surfa
e. The new point on the surfa
e of the sphere is attainable, so the inverse kinemati
s formulas are

applied to this point.

5.1.4 General Walking Stru
ture

Our walk uses a trot-like gait in whi
h diagonally opposite legs step together. That is, �rst one pair of

diagonally opposite legs steps forward while the other pair is stationary on the ground. Then the pairs

reverse roles so that the �rst pair of legs is planted while the other one steps forward. As the Aibo walks

forward, the two pairs of diagonally opposite legs
ontinue to alternate between being on the ground and

being in the air. For a brief period of time at the start of our developmental pro
ess, we explored the

possibility of other gait patterns, su
h as a walking gait where the legs step one at a time. We settled on

the trot gait after wat
hing video of RoboCup teams from previous years.

While the Aibo is walking forwards, if two feet are to be stationary on the ground, that means that

they have to move ba
kwards with respe
t to the Aibo. In order for the Aibo's body to move forwards in

a straight line, ea
h foot should move ba
kwards in a straight line for this portion of its traje
tory. For the

remainder of its traje
tory, the foot must move forward in a
urve through the air. We opted to use a half

ellipse for the shape of this
urve (Figure 4).

A foot's half-ellipti
al path through the air is governed by two fun
tions, y(t) and z(t), where t is the

amount of time that the foot has been in the air so far divided by the total time the foot spends in the air

(so that t runs from 0 to 1). While the Aibo is walking forwards, the value of x for any given leg is always

onstant. The values of y and z are given by

y(t) = C

1

� C

2

os(�t) (17)

and

z(t) = C

3

� C

4

sin(�t): (18)

In these equations, C

1

through C

4

are four parameters that are �xed during the walk. C

1

determines

how far forward the foot is and C

3

determines how
lose the shoulder is to the ground. The parameters C

2

and C

4

determine how big a step is and how high the foot is raised for ea
h step (Figure 4). Our walk has

many other free parameters, whi
h are all des
ribed in Se
tion 5.1.7.

22

x

y

(a) (b)

Figure 5: The main movement dire
tion of the half ellipses
hanges for (a) walking sideways, (b) turning in

pla
e. (The dark squares indi
ate the positions of the four feet when standing still.)

x

y

Figure 6: Combining forwards, sideways and turning motions. Ea
h
omponent
ontributes a ve
tor to the

ombination. Dashed lines show the resulting ve
tors. (We show only half of the ellipse lengths, for
larity.)

With the ve
tors shown, the robot will be turning towards its right as it moves diagonally forward and right.

5.1.5 Omnidire
tional Control

After implementing the forward walk, we needed sideways, ba
kwards, and turning motions. There is a ni
e

des
ription of how to obtain all these (and any
ombination of these types of walks) in [12℄. We based our

implementation on the ideas from that paper.

Sideways and ba
kwards walks are just like the forward walk with the ellipse rotated around the z axis

(Figure 5a). For walking sideways, the ellipse is rotated 90

Æ

to the side towards whi
h the robot should

walk. For walking ba
kwards, the ellipse points in the negative y dire
tion. Turning in pla
e is a little more

ompli
ated. The four legs of the robot de�ne a
ir
le passing through them. The dire
tion of the ellipse

for ea
h leg is tangent to this
ir
le, pointing
lo
kwise if the robot is to turn right and
ounter
lo
kwise to

turn left (Figure 5b).

Combinations of walking forwards, ba
kwards, sideways, and turning are also possible by simply
om-

bining the di�erent
omponents for the ellipses through ve
tor addition. For example, to walk forwards and

to the right at the same time, at an angle of 45

Æ

to the y axis, we would make the ellipses point 45

Æ

to the

right of the y axis. Any
ombination
an be a
hieved as shown in Figure 6.

In pra
ti
e, the method des
ribed here worked well for
ombinations of forwards and turning velo
ities,

but we had diÆ
ulty also in
orporating sideways velo
ities. The problem was that, after tuning the param-

23

eters (Se
tion 5.1.8), we found that the parameters that worked well for going forwards and turning did not

work well for walking sideways. It was not obvious how to �nd
ommon parameters that would work for

ombinations of all three types of velo
ities.

In situations where we needed to walk with a non-zero sideways velo
ity, we frequently used a slower om-

nidire
tional walk developed by a student in the Spring semester
lass.

6

That walk is
alled SPLINE WALK,

while the one being des
ribed here is
alled PARAM WALK. Se
tion 5.2.3 dis
usses when ea
h of the walks

was used.

5.1.6 Tilting the Body Forward

Up until the Ameri
an Open, our walking module was restri
ted to having the Aibo's body be parallel to the

ground. That is, it did not allow for the front and ba
k shoulders to be di�erent distan
es from the ground.

This turned out to be a severe limitation. During this time, we were unable to a
hieve a forward speed of

over 150 mm/s. After relaxing this
onstraint, only the slightest hand tuning was ne
essary to bring our

speed over 200 mm/s. After a signi�
ant amount of hand tuning, we were able to a
hieve a forwards walking

speed of 235 mm/s. (The parameters that a
hieve this speed are given in Se
tion 5.1.8 and our pro
edure

for measuring walking speed is des
ribed in Se
tion 5.1.9.)

In many of the fastest and most stable walks the front legs tou
h the ground with their elbows when

they step. Apparently, this is far more e�e
tive than just having the feet tou
h the ground. We enable the

elbows to tou
h the ground by setting the height of the front shoulders to be lower than that of the ba
k

shoulders. However, this ability requires one more
omputation to be performed on the foot
oordinates

before the inverse kinemati
s equations are applied. That is, when the Aibo's body is tilted forward we still

want the feet to move in half ellipses that run parallel to the ground. This means that the points given by

equations 17 and 18 have to be rotated with respe
t to the x-axis before the inverse kinemati
s equations

are applied.

The angle through whi
h these points must be rotated is determined by the di�eren
e between the

desired heights of the front and ba
k shoulders and the distan
e between the front and ba
k shoulders. The

di�eren
e between the heights, d

h

, is a fun
tion of the parameters being used (the heights of the front and

ba
k shoulders are two of our parameters), but the distan
e between the front and ba
k shoulders is a �xed

body length distan
e whi
h we estimate at 1:64 in our units and
all l

b

. Then the angle of the body rotation

is given by

� = sin

�1

�

d

h

l

b

�

: (19)

5.1.7 Des
ription of all the Parameters

This se
tion lists and des
ribes all twenty parameters of our Aibo walk. The units for most of the parameters

are distan
es whi
h are in terms of leg-link length, as dis
ussed in Se
tion 5.1.2. Ex
eptions are noted below.

� Forward step distan
e: How far forward the foot should move from its home position in one step.

� Side step distan
e: How far sideways the foot should move from its home position in one step.

� Turn step distan
e: How far ea
h half step should be for turning.

� Front shoulder height: How high from the ground the robot's front legs' J1 and J2 joints should be.

� Ba
k shoulder height: How high from the ground the robot's ba
k legs' J1 and J2 joints should be.

� Ground fra
tion: What fra
tion of a step time the robot's foot is on the ground. (The rest of the time

is spent with the foot in the air, making a half ellipse.) Between 0 and 1. Has no unit.

6

Aniket Murarka

24

� Front left y-o�set: How far out in the y-dire
tion the robot's front left leg should be when it's in its

home position.

� Front right y-o�set: How far out in the y-dire
tion the robot's front right leg should be when it's in

its home position.

� Ba
k left y-o�set: How far out in the y-dire
tion the robot's ba
k left leg should be when it's in its

home position.

� Ba
k right y-o�set: How far out in the y-dire
tion the robot's ba
k right leg should be when it's in its

home position.

� Front left x-o�set: How far out in the x-dire
tion the robot's front left leg should be when it's in its

home position.

� Front right x-o�set: How far out in the x-dire
tion the robot's front right leg should be when it's in

its home position.

� Ba
k left x-o�set: How far out in the x-dire
tion the robot's ba
k left leg should be when it's in its

home position.

� Ba
k right x-o�set: How far out in the x-dire
tion the robot's ba
k right leg should be when it's in its

home position.

� Front Clearan
e: How far up the front legs should be lifted o� the ground at the peak point of the half

ellipse.

� Ba
k Clearan
e: How far up the ba
k legs should be lifted o� the ground at the peak point of the half

ellipse.

� Dire
tion fwd: Whether the robot should move forwards or ba
kwards. Either 1 or -1. Has no unit.

� Dire
tion side: Whether the robot should move right or left. Either 1 or -1. Has no unit.

� Dire
tion turn: Whether the robot should turn towards its right or its left. Either 1 or -1. Has no

unit.

� Moving max
ounter: Number of Open-R frames one step takes. Greater than 1. Has no unit.

5.1.8 Tuning the Parameters

On
e the general framework of our walk was set up, we were fa
ed with the problem of determining good

values for all of the parameters of the walk. This pro
ess was greatly fa
ilitated by the use of a tool we had

written that allowed us to telnet into the Aibo and
hange walking parameters at run time. Thus we were

able to go ba
k and forth between altering parameters and wat
hing (or timing) the Aibo to see how fast it

was. This pro
ess enabled us to experiment with many di�erent
ombinations of parameters.

We fo
used most of our tuning e�ort on �nding as fast a straight forward walk as possible. Our tuning

pro
ess
onsisted of a mixture of manual hill-
limbing and using our observations of the walk and intuition

about the e�e
ts of the parameters. For example, two parameters that were tuned by relatively blind hill-

limbing were Forward step distan
e and Moving max
ounter. These parameters are very important and

it is often diÆ
ult to know intuitively if they should be in
reased or de
reased. So tuning pro
eeded slowly

and with many trials. On the other hand, parameters su
h as the front and ba
k
learan
es
ould frequently

be tuned by noti
ing, for instan
e, that the front (or ba
k) legs dragged along the ground (or went too high

in the air). The fastest parameters we were able to �nd for our forward walk are given in the following table.

We found that these parameters worked well for
ombinations of forward and turning velo
ities (with

the appropriate modi�
ations to Forward step distan
e and Turn step distan
e). However, when we set the

25

Parameter Value

Forward step distan
e 0:74

Side step distan
e 0:0

Turn step distan
e 0:0

Front shoulder height 1:1

Ba
k shoulder height 1:6

Ground fra
tion 0:5

Front left y-o�set 0:7

Front right y-o�set 0:7

Ba
k left y-o�set �0:4

Ba
k right y-o�set �0:4

Front left x-o�set �0:25

Front right x-o�set 0:25

Ba
k left x-o�set 0:0

Ba
k right x-o�set 0:0

Front
learan
e 0:9

Dire
tion fwd 1

Dire
tion side 1

Dire
tion turn 1

Moving max
ounter 92

Table 3: Fast Walking Parameter Values

forwards and turning
omponents to zero and tried to walk straight sideways, the robot would
urve quite

sharply forwards. Thus to walk with a non-zero sideways velo
ity we used either a di�erent set of parameters

or SPLINE WALK.

5.1.9 Odometry Calibration

As the Aibo walks, it keeps tra
k of its forward, horizontal, and angular velo
ities. These values are used

as inputs to our parti
le �ltering algorithm (see Se
tion 8) and it is important for them to be as a

urate

as possible. The Movement Module takes a walking request in the form of a set of forward, horizontal, and

angular velo
ities. These velo
ities are then
onverted to walking parameters. The Brain assumes that the

velo
ities being requested are the ones that are a
tually attained, so the a

ura
y of the odometry relies on

that of those
onversions.

Sin
e the step distan
e parameters are proportional to the distan
e traveled ea
h step and the time for

ea
h step is the same, the step distan
e parameters should theoreti
ally be proportional to the
orresponding

velo
ities. This turned out to be true to a fair degree of a

ura
y for
ombinations of forward and turning

velo
ities. As mentioned above, we needed to use a di�erent set of parameters for walking with a non-zero

sideways velo
ity. These parameters did not allow for a fast forward walk, but with them the velo
ities were

roughly proportional to the step distan
es for
ombinations of forward, turning, and sideways velo
ities.

The proportionality
onstants are determined by a dire
t measurement of the relevant velo
ities. To

measure forward velo
ity, we use a stopwat
h to time the robot walking from one goal line to the other with

its forward walking parameters. The time taken is divided into the length of the �eld, 4200 mm, to yield

the forward velo
ity. The same pro
ess is used to measure sideways velo
ity. To measure angular velo
ity,

we exe
ute the walk with turning parameters. Then we measure how mu
h time it takes to make a
ertain

number of
omplete revolutions. This yields a velo
ity in degrees per se
ond. Finally, the proportionality

onstants were
al
ulated by dividing the measured velo
ities by the
orresponding step distan
e parameters

that gave rise to them.

Sin
e the odometry estimates are used by lo
alization (Se
tion 8), the odometry
alibration
onstants

26

ould be tuned more pre
isely by running lo
alization with a given set of odometry
onstants and observing

the e�e
ts of the odometry on the lo
alization estimates. Then we
ould adjust the odometry
onstants in

the appropriate dire
tion to make lo
alization more a

urate. We feel that we were able to a
hieve quite

a

urate odometry estimates by a repetition of this pro
ess.

5.2 General Movement

Control of the Aibo's movements o

urs at three levels of abstra
tion.

1. The lowest level, the \movement module," resides in a separate Open-R obje
t from the rest of our
ode

(as des
ribed in the
ontext of our general ar
hite
ture in Se
tion 10) and is responsible for sending

the joint values to OVirtualRobotComm, the provided Open-R obje
t that serves as an interfa
e to the

Aibo's motors.

2. One level above the movement module is the \movement interfa
e," whi
h handles the work of
al-

ulating many of the parameters parti
ular to the
urrent internal state and sensor values. It also

manages the inter-obje
t
ommuni
ation between the movement module and the rest of the
ode.

3. The highest level o

urs in the behavior module itself (Se
tion 12), where the de
isions to initiate or

ontinue entire types of movement are made.

5.2.1 Movement Module

The movement module shares three
onne
tions (\servi
es") with other Open-R obje
ts: one with the

OVirtualRobotComm obje
t mentioned above, and two with the Brain, the Open-R obje
t whi
h in
ludes

most of our
ode (see Se
tion 10 for a des
ription of our general ar
hite
ture), in
luding the C++ obje
t

orresponding to the movement interfa
e des
ribed in Se
tion 5.2.2. It uses one
onne
tion with the Brain

to take requests from the Brain for types of high-level movement, su
h as walking in a parti
ular dire
tion or

ki
king. It then
onverts them to joint values, and uses its
onne
tion with OVirtualRobotComm to request

that joint positions be set a

ordingly. These requests are sent as often as is allowed { every 8 millise
onds.

The se
ond
onne
tion with the Brain allows the movement module to send updates to the Brain about

what movement it is
urrently performing. Among other things, this lets the Brain know when a movement

it requested has �nished (su
h as a ki
k). The
ow of
ontrol is illustrated by the arrows in Figure 7 (the

fun
tions identi�ed in the �gure are de�ned below). Thi
k arrows represent a message
ontaining information

(from Subje
t to Observer); thin arrows indi
ate a message without further information (from Observer to

Subje
t). An arrow ending in a null marker indi
ates that the message does nothing but enable the servi
e

to send another message.

Be
ause the movement module must send an Open-R message to OVirtualRobotComm every time it

wants to
hange a joint position, it is ne
essary for the movement module to keep an internal state so

that it
an resume where it left o� when OVirtualRobotComm returns
ontrol to the movement module.

Whenever this happens, the movement module begins exe
ution with the fun
tion ReadyEffe
tor, whi
h

is
alled automati
ally every time OVirtualRobotComm is ready for a new
ommand. ReadyEffe
tor
alls

the parti
ular fun
tion
orresponding to the
urrent movement module state, a variable that indi
ates whi
h

type of movement is
urrently in progress. Many movements (for example, walking and ki
king) require that

a sequen
e of sets of joint positions be
arried out, so the fun
tions responsible for these movements must

be exe
uted multiple times (for multiple messages to OVirtualRobotComm). The states of the movement

module are summarized in Table 4.

Whereas ki
king and getting up require the Aibo's head to be doing something spe
i�
, neither the idle

state nor the two walks require anything in parti
ular from the head joints. Furthermore, it is useful to allow

the head to move independently from the legs whenever possible (this allows the Aibo to \keep its eye on the

ball" while walking, for instan
e). Thus the movement module also maintains a separate internal state for

the head. If the movement module's state is KICK MOTION or GETUP MOTION when ReadyEffe
tor

begins exe
ution, the new joint angles for the head will be spe
i�ed by the fun
tion
orresponding to the

27

OVirtualRobotComm MovementModule Brain

(ReceiveMovement)

Update Brain’s knowledge of MovementModule state.

(ReadyEffector)

If state has changed, notify Brain.

Send new joint values to robot.

(MoveToNewAngles)

Adjust motors to reflect new joint values.

(NewParamsNotify) Send movement request.

(Movement.SendCommand)

change state if current action is finished

calculate new joint values

...

...

...

Change MovementModule state
according to received request.

determine movement corresponding to current behavior

...

...

Figure 7: Inter-obje
t
ommuni
ation involving the movement module. Thi
k arrows represent a message

ontaining information (from Subje
t to Observer); thin arrows indi
ate a message without further informa-

tion (from Observer to Subje
t). An arrow ending in a null marker indi
ates that the message does nothing

but enable the servi
e to send another message.

State Des
ription

INIT Initial state

IDLE No leg motion, but joint gains are set (robot is standing)

7

PARAM WALK Fastest walk

SPLINE WALK Omnidire
tional slower walk

KICK MOTION Ki
king

GETUP MOTION No joint position requests being sent to OVirtualRobotComm,

thus allowing built-in Sony getup routines
ontrol over all motors

Table 4: Movement module states

movement module state. Otherwise, ReadyEffe
tor
alls a fun
tion
orresponding to the
urrent head state,

whi
h determines the new joint angles for the head, and the rest of the joint angles are determined by the

fun
tion for the
urrent movement module state. A summary of the head states appears in Table 5.

The movement module listens for
ommands with a fun
tion
alled NewParamsNotify. When the Brain

sends a movement request, NewParamsNotify a

epts it and sets the movement module state and/or head

state a

ordingly. When the internal state is next examined { this o

urs in the next
all to ReadyEffe
tor

(that is, after the next time the joint positions are set by OVirtualRobotComm) { the movement module

begins exe
uting the requested movement. See Table 6 for a summary of the possible requests to the

movement module. Note that both a head movement and a body movementmay be requested simultaneously,

with the same message. However, if the body movement that is requested needs
ontrol of the head joints,

the head request is ignored.

7

In pra
ti
e, this is implemented by exe
uting a \walk" with forward velo
ity, side velo
ity, turn velo
ity, and leg height all

equal to 0.

28

State Des
ription

IDLE Head is still (but joint gains are set)

MOVE Moving head to a spe
i�
 position

SCAN Moving head at a
onstant speed in one dire
tion

KICK Exe
uting a sequen
e of head positions

Table 5: Head states

Type of request Explanation Asso
iated parameters

MOVE NOOP don't
hange body movement

MOVE STOP stop leg movement

MOVE PARAM WALK start walking using ParamWalk x-velo
ity, y-velo
ity, angular velo
ity

MOVE SPLINE WALK start walking using SplineWalk x-destination, y-destination, angular destination

MOVE KICK exe
ute a ki
k type of ki
k

MOVE GETUP get up from a fall

DONE GETUP robot is now upright, resume motions

HEAD NOOP don't
hange head movement

HEAD MOVE move head to a spe
i�
 angle

HEAD SCAN s
an head at
onstant velo
ity s
an speed, dire
tion

HEAD KICK ki
k with the head type of ki
k

HEAD STOP stop head movement

Table 6: Possible requests to the movement module

5.2.2 Movement Interfa
e

The movement interfa
e is part of the Brain Open-R obje
t. Its main fun
tion is to translate high-level

movement
ommands into movement module requests, so that the Brain
an simply spe
ify high-level move-

ment behaviors (su
h as \turn toward this angle and ki
k with this ki
k") and let the movement interfa
e

take
are of the rest.

During ea
h Brain
y
le, the behavior modules spe
ify movements by
alling movement interfa
e fun
-

tions, whi
h
ompute the
ombination of movement module requests ne
essary to
arry out the spe
i�ed

movement. If the requested types of movement do not interfere with ea
h other (for example, if both a head

s
an and a forward walk are requested in the same Brain
y
le), then all requested movements are
ombined

in the message that is eventually sent to the movement module. Finally, at the end of ea
h Brain
y
le, the

fun
tion Movement.SendCommand is
alled. This fun
tion takes
are of sending the message to the movement

module
ontaining the request, and ensuring that redundant messages are not sent.

The movement interfa
e provides fun
tions for basi
 movements su
h as walking forward, turning, moving

the head to a position, stopping the legs or head, and getting up from a fall. It also provides several fun
tions

for more
omplex movements, whi
h are des
ribed here.

Head S
an When sear
hing for the ball, it is helpful to move the head around in some fashion so that

more of the �eld
an be seen. On the one hand, the more qui
kly the �eld
an be
overed by the s
an, the

more qui
kly the ball
an be found. On the other hand, if the head moves too qui
kly, the vision will not

be able to re
ognize the ball, be
ause it will not be in sight for the required number of frames. Therefore

it makes sense to try to
over as mu
h of the �eld with as little head movement as possible. At �rst we

believed that it was not possible to
over the entire height of the �eld with fewer than three horizontal s
ans,

so we used a three-layer head s
an at the Ameri
an Open. However, by wat
hing other teams, we be
ame

onvin
ed that it must be possible to
over the entire relevant portion of the �eld with two head s
ans. After

some experimentation, we managed to eliminate the persistent blind spot in the middle of a two-layer head

29

s
an that we
reated. Thus, the movement interfa
e now provides a fun
tion that takes
are of exe
uting

the two-layer head s
an. It also allows the behaviors to spe
ify whi
h
orner the s
an starts from. This is

be
ause the two-layer head s
an typi
ally o

urs immediately after losing the ball, and often the brain knows

whi
h dire
tion the ball is most likely to be in given where it was last seen. Thus allowing the starting
orner

to be spe
i�ed allows this information to be used.

Follow Obje
t On
e the robot sees the ball, walking towards it is a
hieved by two simultaneous
ontrol

laws. The �rst keeps the head pointed dire
tly at the ball as the ball moves in the image. This is a
hieved

by taking the horizontal and verti
al distan
es between the lo
ation of the ball in the image and the
enter

of the image and
onverting them into
hanges in the head pan and tilt angles.

Se
ond, the Aibo walks towards the dire
tion that its head is pointing. It does this by walking with a

ombination of forward and turning velo
ities. As the head's pan angle
hanges from the straight ahead

position towards a sidewise-fa
ing position, the forward velo
ity de
reases linearly (from its maximum) and

the turning velo
ity in
reases linearly (from zero). In
ombination, these poli
ies bring the Aibo towards the

ball.

While we were able to use the above methods to have the Aibo walk in the general dire
tion of the

ball, it proved quite diÆ
ult to have the Aibo reliably attain
ontrol of the ball. One problem was that the

robot would kno
k the ball away with its legs as it approa
hed the ball. We found that if we in
reased the

proportionality
onstant of the turning velo
ity, it would allow the robot to fa
e the ball more pre
isely as

it went up to the ball. Then the ball would end up between the Aibo's front legs instead of getting kno
ked

away by one of them. Another problem that arose was that the Aibo o

asionally bumped the ball out of

the way with its head. We dealt with this by having the robot keep its head pointed 10

Æ

above the ball.

Both of these solutions required some experimentation and tuning of parameters.

Tra
k Obje
t This fun
tion follows a ball with the head, and turns the body in pla
e when ne
essary so

as not to lose sight of the ball. It is used
hie
y for the goalie.

Strafe Before we had lo
alization in pla
e, we needed a way to turn the robot around the ball so that it

ould ki
k it towards the goal. The problem was that we needed to keep its head pointing down the �eld so

it
ould see the goal, whi
h made turning with the ball pin
hed underneath the
hin (see below) unfeasible.

Stra�ng
onsisted of walking with a sideways velo
ity and a turning velo
ity, but no forward velo
ity. This

aused the Aibo to walk sideways in a
ir
le around the ball. During this time, it was able to keep its head

pointed straight ahead so that it
ould stop when it saw the goal.

Chin Pin
h Turn This is a motion whi
h lowers the head (to a tilt angle of �55

Æ

) to trap the ball below

the
hin, and then turns some number of degrees while the ball is trapped there. On
e we had lo
alization

in pla
e, this repla
ed the strafe fun
tion just des
ribed, be
ause it is both faster and more reliable at not

losing the ball.

Tu
k Ball Under This fun
tion walks forward slowly while pulling the head down. It helps the Aibo

attain
ontrol of the ball, and is typi
ally used for the transition between follow obje
t and
hin pin
h turn.

5.2.3 High-Level Control

For the most part, it is the task of the behaviors to simply
hoose whi
h
ombinations of the movement

interfa
e fun
tions just des
ribed should be exe
uted. However, there are ex
eptions; sometimes there is a

reason to handle some details of movement at the level of the behavior. One su
h ex
eption is establishing

the duration of the
hin pin
h turn. Be
ause lo
alization is used to determine when to stop the
hin pin
h

turn, it makes more sense to deal with this in the behavior than in the movement interfa
e, whi
h does not

otherwise need to get lo
alization information.

30

If the behavior
hooses to do a
hin pin
h turn (see Se
tion 12.1.2 for details on when this happens),

it will spe
ify an Aibo-relative angle that it wishes to turn toward as well as whi
h way to turn (by the

sign of the angle). This angle is then
onverted to an angle relative to the robot's heading to the o�ensive

goal.

8

The robot
ontinues to turn

9

until the robot's heading to the opponent goal is as desired, and then

the behavior transitions to the ki
king state.

While we use PARAM WALK for the vast majority of our walking, we use SPLINE WALK in most
ases

where we need to walk with a non-zero sideways velo
ity. An important example of this is in the supporter

role (Se
tion 13.2.1), where we need to walk to a point while fa
ing a
ertain dire
tion. SPLINE WALK was

also used for part of the obsta
le avoidan
e
hallenge task. In general, we de
ided whi
h walk to use in any

parti
ular situation by trying both and seeing whi
h one was more e�e
tive.

6 Fall Dete
tion

Sony provides routines that enable the robot to dete
t when it's fallen and that enable it to get up. Our

initial approa
h was to simply use these routines. However, as our walk evolved, the angle of the Aibo's

trunk while walking be
ame steeper. This,
ombined with variations between robots,
aused several of our

robots to think they were falling over every few steps and to try repeatedly to get up. To remedy this, we

implemented a simple fall dete
tion system of our own.

The fall dete
tion system fun
tions by noting the robot's x- and y-a

elerometer sensor values ea
h Brain

y
le. If the absolute value of an a

elerometer reading is greater than some
onstant (we used 6; 800; 000)

for a number (5) of
onse
utive
y
les, a fall is registered.

It is also possible to turn fall dete
tion o� for some period of time. Many of our ki
ks require the Aibo

to pass through a state whi
h would normally register as a fall, so fall dete
tion is disabled while the Aibo is

ki
king. If the Aibo falls during a ki
k, the fall dete
tion system registers the fall when the ki
k is �nished,

and the Aibo then gets up.

7 Ki
king

The robot's ki
k is spe
i�ed by a sequen
e of poses. A Pose = (j

1

; : : : ; j

n

), j

i

2 <, where j represents the

positions of the n joints of the robot. The robot uses its PID me
hanism to move joints 1 through n from

one Pose to another over a time interval t. We spe
ify ea
h ki
k as a series of moves fMove

1

; : : : ;Move

m

g

where aMove = (Pose

i

; P ose

f

;�t) andMove

jPose

f

=Move

(j+1)Pose

i

, 8j 2 [1;m�1℄. All of our ki
ks only

used 16 of the robot's joints (leg, head, and mouth). Table 7 depi
ts the used joints and joint des
riptions.

7.1 The Initial Ki
k

In the beginning stages of our team development, our main fo
us was on
reating modules (Movement,

Vision, Lo
alization, et
.) and in
orporating them with one another. Development of ki
ks did not be
ome

a high priority until after the other modules had been in
orporated. Thus, we
reated a \�rst ki
k" early on

to address the needs of the other modules as they developed and
reated other ki
ks mu
h later to expand

our strategi

apabilities.

We de
ided to model our �rst ki
k after what seemed to be the predominant goal-s
oring ki
k from

previous RoboCup
ompetitions. During the ki
k, the robot raises its two front legs up and drops them onto

the sides of the ball. The for
e of the falling legs propels the ball forward. Our �rst ki
k,
alled the \front

power ki
k" tried to a
hieve this e�e
t.

8

The
hoi
e of heading to the o�ensive goal as the landmark for determining when the
hin pin
h turn should stop is due

to the fa
t that the
hin pin
h turn's destination is often fa
ing the opponent goal, as well as the fa
t that there was already

a
onvenient GlobalMap interfa
e fun
tion that provided heading to the o�ensive goal. In theory, anything else would work

equally well.

9

That is, the behavior repeatedly sends requests to the movement interfa
e to exe
ute the
hin pin
h turn.

31

joint joint des
ription

j

1

front right rotator

j

2

front right abdu
tor

j

3

front right knee

j

4

front left rotator

j

5

front left abdu
tor

j

6

front left knee

j

7

ba
k right rotator

j

8

ba
k right abdu
tor

j

9

ba
k right knee

j

10

ba
k left rotator

j

11

ba
k left abdu
tor

j

12

ba
k left knee

j

13

head tilt joint

j

14

head pan joint

j

15

head roll joint

j

16

mouth joint

Table 7: Joints used in ki
ks

We wanted our front power ki
k to transition from any walk without prematurely tapping the ball out

of the way. Thus, we started the ki
k in a \broadbase" position in whi
h the robot's torso is on the ground

with its legs spread out to the side. If the robot were to transition into the front power ki
k from a standing

position, the robot would drop to the ground while pulling its legs away from the ball. From this broadbase

position, the robot then moves its front legs together to
enter the ball. After the ball has been
entered,

the robot moves its front legs up above its head and then qui
kly drops the front legs onto the sides of the

ball, ki
king the ball forward.

We found that the ki
k moves the ball relatively straight ahead for a distan
e of up to 3 meters. However,

we noti
ed that the robot's front legs would miss the ball if the ball were within 3
m of the robot's
hest.

We resolved this issue by using the robot's mouth to push the ball slightly forward before dropping its legs

on the ball.

7.2 A General Ki
k Framework

We soon realized that we would need to
reate several di�erent ki
ks for di�erent purposes. To that end,

we started thinking of the ki
k-generation pro
ess in more general terms. In this se
tion we formalize that

pro
ess.

The ki
k is an example of a �ne-motor
ontrol motion where small errors matter. Creation of a ki
k

requires spe
ial attention to ea
h Pose. A few angles' di�eren
e
ould a�e
t whether the robot makes

onta
t with the ball. Even a small di�eren
e in �t in a Move
ould a�e
t the su

ess of a ki
k. To make

matters more
ompli
ated, our team needed the ki
k to transition from and to a walk. More
onsideration

had to be taken to ensure that neither the walk nor the ki
k disrupted the operation of the other.

We devised a two-step te
hnique for ki
k-generation:

1. Creating the ki
k in isolation from the walk.

2. Integrating the ki
k into the walk.

7.2.1 Creating the Criti
al A
tion

We �rst
reated the ki
k in isolation from the walk. The Moves that
omprise the ki
k in isolation
onstitute

the
riti
al a
tion of the ki
k. To obtain the joint angle values for ea
h Pose, we used a tool that
aptured

32

all the joint angle values of the robot after physi
ally positioning the robot in its desired pose. We �rst

positioned the robot in the Pose in whi
h the robot
onta
ts the ball for the ki
k and re
orded j

1

; : : : ; j

n

for

that Pose. We
alled this Pose

b

.

We then physi
ally positioned the robot in the Pose from whi
h we wanted the robot to move to Pose

b

.

We
alled this Pose

a

. We then
reated a Move m = (Pose

a

; P ose

b

;�t) and wat
hed the robot exe
ute m.

At this point of ki
k
reation, we were primarily
on
erned with the path the robot took from Pose

a

to

Pose

b

. Thus, we abstra
ted away the �t of the Move by sele
ting a large �t that enabled us to wat
h the

path from Pose

a

to Pose

b

. We typi
ally sele
ted �t to be 64. Sin
e movement module requests are sent

every 8 millise
onds, this Move took 64 * 8 millise
onds to exe
ute.

If the Move did not travel a path that allowed the robot to ki
k the ball su

essfully, we then added an

intermediary Pose

x

between Pose

a

and Pose

b

and
reated a sequen
e of two Moves f(Pose

a

; P ose

x

;�t

i

);

(Pose

x

; P ose

b

;�t

i+1

)g and wat
hed the exe
ution. Again, we abstra
ted away �t

i

and �t

i+1

, typi
ally

sele
ting 64. After wat
hing the path for this sequen
e of Moves, we repeated the pro
ess if ne
essary.

After we were �nally satis�ed with the sequen
e of Moves in the
riti
al a
tion, we tuned the �t for ea
h

Move. Our goal was to exe
ute ea
h Move of the
riti
al a
tion as qui
kly as possible. Thus, we redu
ed �t

for ea
h Move individually, stopping if the next de
rement disrupted the ki
k.

7.2.2 Integrating the Criti
al A
tion into the Walk

The se
ond step in
reating the �nely
ontrolled a
tion involves integrating the
riti
al a
tion into the walk.

There are two points of integration: (1) the transition from the walk to the
riti
al a
tion, (2) the transition

from the
riti
al a
tion to the walk.

We �rst fo
us on the Move i = (Pose

y

; P ose

a

;�t), where Pose

y

2 fall possible poses of the walkg. Sin
e

i pre
edes the
riti
al a
tion, there may be
ases in whi
h i adds unwanted momentum to the
riti
al a
tion

and disrupts it. If i had su
h
ases, we found a Pose

s

, in whi
h f(Pose

y

; P ose

s

;�t); (Pose

s

; P ose

a

;�t)g

did not lend unwanted momentum to the
riti
al a
tion. We
all this the initial a
tion. The Pose

s

we used

mirrored the idle position of the walk. The idle position of the walk is the Pose the robot assumes when

walking with 0 velo
ity. We then added the Move (Pose

s

; P ose

a

;�t), abstra
ting away the �t, to the moves

of the
riti
al a
tion and wat
hed the path of exe
ution.

As with the
reation of the
riti
al a
tion, we then added intermediary Poses until we were satis�ed with

the sequen
e of Moves from Pose

y

to Pose

a

. We then �ne-tuned the �t for the added Moves.

Finally, at the end of every ki
k during game play the robot assumes the idle position of the walk, whi
h

we
all Pose

z

, before
ontinuing the walk. This transition to Pose

z

takes 1 movement
y
le. Thus we

onsider the last Move of the ki
k, f , to be (Pose

b

; P ose

z

; 1). Sin
e f follows the
riti
al a
tion, there may

be
ases in whi
h f hinders the robot's ability to resume walking.

In su
h
ases, as with the
reation of the
riti
al a
tion and the initial a
tion, we then added intermediary

Poses until we were satis�ed with the sequen
e of Moves from Pose

b

to Pose

z

. We
all the Moves between

the intermediary Poses the �nal a
tion. We then �ne-tuned the values of �t used in the �nal a
tion.

The sequen
e of Moves
onstituting the initial a
tion,
riti
al a
tion, and �nal a
tion make up the ki
k.

7.3 Head Ki
k

After many of our modules had been integrated, the need arose for a ki
k in a non-forward dire
tion. Inspired

by previous RoboCup teams, de
ided that the head
ould be used to ki
k the ball to the left or to the right.

During the head ki
k, the robot �rst leans in the dire
tion opposite of the dire
tion it intends to ki
k the

ball. The robot then moves its front leg (left leg when ki
king left, right leg when ki
king right) out of the

way. Finally, the robot leans in the dire
tion of the ki
k as the head turns to ki
k the ball.

The head ki
k moves the ball almost due left (or right) a distan
e of up to 0.5 meters. We dis
overed

that the head ki
k was espe
ially useful when the ball was
lose to the edge of the �eld. The robot
ould

walk to the ball, head ki
k the ball along the wall, and almost immediately
ontinue walking, whereas the

front power ki
k frequently ki
ked the ball against the wall, e�e
tively moving the ball very little, if at all.

33

7.4 Chest Push Ki
k

The
reation of the head ki
k informed us that the robot
ould enter and exit a ki
k mu
h faster when the

ki
k o

urred with the robot in a standing position. We thus
reated the
hest push ki
k in hopes that its

exe
ution would be mu
h faster than that of the front power ki
k. During the
hest push ki
k, the robot

qui
kly leans its
hest into the ball. This o

urs while the robot remains in a standing position.

To
reate the ki
k, we �rst isolated the ki
k from the walk. The following table shows the
riti
al a
tion

for the
hest push ki
k. In these tables ea
h value of �t is listed in the row of the Pose that ends the

orresponding Move.

j

1

j

2

j

3

j

4

j

5

j

6

j

7

j

8

j

9

j

10

j

11

j

12

j

13

j

14

j

15

j

16

�t

Pose

1

-12 30 91 -12 30 91 -70 45 104 -70 45 104 0 0 0 0 64

Pose

2

-120 90 145 -120 90 145 120 25 125 120 25 125 0 0 0 0 1

Pose

3

-12 30 91 -12 30 91 -30 6 104 -30 6 104 0 0 0 0 64

Table 8: Chest push ki
k
riti
al a
tion

We then integrated the walk with the ki
k. Testing revealed that the robot su

essfully ki
ked the

ball 55% of the time and fell over after 55% of the su

essful ki
ks. Sin
e (Pose

y

; P ose

1

;�t) added

unwanted momentum to the
riti
al a
tion, we
reated an initial a
tion to pre
ede the
riti
al a
tion.

f(Pose

y

; P ose

s

; 64); (Pose

s

; P ose

1

; 64)g does not lend unwanted momentum to the
riti
al a
tion. Test-

ing revealed that the robot now su

essfully ki
ked the ball 100% of the time. The following table shows the

initial a
tion with the
riti
al a
tion.

j

1

j

2

j

3

j

4

j

5

j

6

j

7

j

8

j

9

j

10

j

11

j

12

j

13

j

14

j

15

j

16

�t

Pose

s

-12 30 91 -12 30 91 -30 6 104 -30 6 104 0 0 0 0 64

Pose

1

-12 30 91 -12 30 91 -70 45 104 -70 45 104 0 0 0 0 64

Pose

2

-120 90 145 -120 90 145 120 25 125 120 25 125 0 0 0 0 1

Pose

3

-12 30 91 -12 30 91 -30 6 104 -30 6 104 0 0 0 0 64

Table 9: Chest push ki
k initial a
tion and
riti
al a
tion

Sin
e the
riti
al a
tion did not add unwanted momentum that hindered the robot's ability to resume its

baseline motion, there was no need to
reate a �nal a
tion.

We found that the
hest push ki
k moves the ball relatively straight ahead. It is also very fast. However,

the distan
e the ball travels after the
hest push ki
k is signi�
antly smaller than the distan
e the ball travels

after the front power ki
k. Thus, we de
ided against using the
hest push ki
k instead of the front power

ki
k during game play.

7.5 Arms Together Ki
k

After
reating ki
ks geared toward s
oring goals, we realized that we needed a ki
k for the goalie to blo
k the

ball from entering its goal. De
iding that speed and
overage area were more important than the dire
tion

of the ki
k, we
reated the arms together ki
k. During the arms together ki
k, the robot �rst drops into

broadbase position mentioned in Se
tion 7.1. The robot then swings its front left leg inward. After that, the

robot swings its front right leg inward as it swings its front left leg ba
k out. The arms together ki
k proved

su

essful at qui
kly propelling the ball away from the goal.

7.6 Fall Forward Ki
k

After attending the Ameri
an Open, we saw a need for a forward dire
tion ki
k more powerful than the

front power ki
k. Inspired by a ki
k used by the CMPa
k team from Carnegie Mellon, we
reated the fall

34

forward ki
k. The fall forward ki
k makes use of the forward momentum of the robot as it falls from standing

position to lying position. Sin
e the ki
k begins in a standing position, the robot
an qui
kly transition from

the walk to the ki
k. However, sin
e the ki
k ends in a lying position, the robot does not transition from

the ki
k ba
k to the walk as qui
kly.

We �rst isolated the ki
k from the walk. The following table shows the
riti
al a
tion.

j

1

j

2

j

3

j

4

j

5

j

6

j

7

j

8

j

9

j

10

j

11

j

12

j

13

j

14

j

15

j

16

�t

Pose

1

-5 0 20 -5 0 20 -35 6 75 -35 6 75 45 -90 0 0 32

Pose

2

-100 23 0 -100 23 0 100 6 75 100 6 75 45 -90 0 0 32

Table 10: Fall forward ki
k
riti
al a
tion

We then integrated the walk with the ki
k. There was no need to
reate an initial a
tion be
ause any

momentum resulting from (Pose

y

; P ose

1

; 32) was in the forward dire
tion (the same dire
tion we wanted

the robot to fall). However, testing revealed that (Pose

2

; P ose

z

;�t)
aused the robot to fall forward on its

fa
e every time. Although the robot su

essfully ki
ked the ball, the robot
ould not immediately resume

walking. In this situation, the robot had to wait for its fall dete
tion to trigger and tell it to get up before

resuming the walk. The get up routine triggered by fall dete
tion was very slow. Thus, we found a Pose

g

su
h that f(Pose

2

; P ose

g

; 32); (Pose

g

; P ose

z

;�t)g does not hinder the robot's ability to resume walking.

The following table shows the
riti
al a
tion with Move(Pose

2

; P ose

g

; 32).

j

1

j

2

j

3

j

4

j

5

j

6

j

7

j

8

j

9

j

10

j

11

j

12

j

13

j

14

j

15

j

16

�t

Pose

1

-5 0 20 -5 0 20 -35 6 75 -35 6 75 45 -90 0 0 32

Pose

2

-100 23 0 -100 23 0 100 6 75 100 6 75 45 -90 0 0 32

Pose

g

90 90 0 90 90 0 100 6 75 100 6 75 45 -90 0 0 32

Table 11: Fall forward ki
k
riti
al a
tion and f(Pose

2

; P ose

g

; 32)g

From observation, it is noted that transitioning from Pose

2

dire
tly to Pose

g

is not ideal. The robot

would fall over 25% of the time during (Pose

2

; P ose

g

; 32). Thus, we added Pose

w

to pre
ede Pose

g

in the

�nal a
tion. Afterwards, the robot no longer fell over when transitioning from the ki
k to the walk. The

following table shows the entire �nely
ontrolled a
tion,
onsisting of the
riti
al a
tion and the �nal a
tion.

j

1

j

2

j

3

j

4

j

5

j

6

j

7

j

8

j

9

j

10

j

11

j

12

j

13

j

14

j

15

j

16

�t

Pose

1

-5 0 20 -5 0 20 -35 6 75 -35 6 75 45 -90 0 0 32

Pose

2

-100 23 0 -100 23 0 100 6 75 100 6 75 45 -90 0 0 32

Pose

w

-100 90 0 -100 90 0 100 6 75 100 6 75 45 -90 0 0 32

Pose

g

90 90 0 90 90 0 100 6 75 100 6 75 45 -90 0 0 32

Table 12: Fall forward ki
k
riti
al a
tion and �nal a
tion

The fall forward ki
k exe
uted qui
kly and potentially moved the ball the entire distan
e of the �eld (4.2

meters). Unfortunately, the fall forward ki
k did not reliably propel the ball dire
tly forward. Thus, in game

play, we used the fall forward ki
k in the defensive half of the �eld and used the front power ki
k for more

reliable goal s
oring in the o�ensive half of the �eld.

One unexpe
ted side-e�e
t of adding Pose

g

to the end of the fall forward ki
k was that the outstret
hed

legs in Pose

g

added additional ball
overage. A ball that the fall forward a
tion missed be
ause it was not

lo
ated around the robot's
hest would a
tually be propelled forward if the ball was just in front of one of

the front legs. Thus, the fall forward ki
k, whi
h moves the ball away mu
h farther than the arms together

ki
k, also be
ame our primary goalie blo
k.

35

7.7 Yoshi Ki
k

Games at the Ameri
an Open also inspired us to
reate the yoshi ki
k. During the yoshi ki
k, the robot

laun
hes its body over the ball and ki
ks the ball out from behind it. The yoshi ki
k ideally works well

in situations when the robots are
rowded together around the ball. However, be
ause the yoshi ki
k is

still somewhat unreliable, the behavior used for RoboCup games only exe
utes a yoshi ki
k in very spe
i�

ir
umstan
es, whi
h in pra
ti
e o

ur rarely. (See Se
tion 12.1.2 for details.)

8 Lo
alization

Sin
e it requires at least vision and preferably lo
omotion to already be in pla
e, lo
alization was a rela-

tively late emphasis in our e�orts. In fa
t, it did not truly
ome into pla
e until after the Ameri
an Open

Competition at the end of April. Before that time, we had been working on a preliminary approa
h that

was eventually dis
arded and repla
ed by the
urrent one.

For self-lo
alization, the Austin Villa team implemented a Monte-Carlo lo
alization approa
h similar to

the one used by the German Team [5℄. This approa
h uses a
olle
tion of parti
les to estimate the global

position and orientation of the robot. These estimates are updated by visual per
epts of �xed landmarks

and odometry data from the robot's movement module (see Se
tion 5.1.9). The parti
les are averaged to

�nd a best guess of the robot's pose.

We have extended the approa
h of the German Team to improve the a

ura
y of the observation updates.

Rather than using only the most
urrent landmark observations, our approa
h maintains a history of re
ent

observations that are averaged a

ording to their estimated a

ura
y. Be
ause it is rare for the robot to

gather suÆ
ient information in a single
amera frame to triangulate its position, it is important to in
orporate

visual information from the re
ent past. At the same time, if visual data is ina

urate, reusing it again and

again
an aggravate the problem. Our approa
h is able to leverage past data while, in most situations,

robustly tolerating o

asional bad inputs.

8.1 Basi
 Parti
le Filtering Approa
h

The goal of the lo
alization module is to
al
ulate a probability distribution over the possible lo
ations and

orientations of the robot. Rather than modeling this distribution parametri
ally, Monte-Carlo lo
alization

uses a �nite set of samples
alled parti
les. Ea
h parti
le
an be seen as a hypothesis for the
urrent pose

of the robot: < x; y; � > where < x; y > is the position of the robot and � is its orientation in the global

oordinate system. Along with a pose hypothesis, ea
h parti
le is assigned a probability, p, representing the

likelihood that the estimate is
orre
t. In our implementation, we used a set of 100 of these parti
les, whi
h

we found experimentally to provide a suÆ
ient level of a

ura
y without substantially lowering the rate of

our main exe
ution
y
le.

During ea
h exe
ution
y
le of the robot, the lo
alization module updates the set of parti
les in three

steps. The �rst step is the motion update in whi
h the parti
les are moved based on the physi
al movement

of the robot. The next step is the observation update in whi
h the parti
le probabilities are adjusted for the

latest visual information. Finally, resampling is done to sto
hasti
ally move the parti
les
loser to the most

likely pose estimate. The following se
tions des
ribe these updates in detail.

8.2 Motion Update

Based on the
urrently exe
uting walk or ki
k, the movement module returns an estimate of the robot's

hange in position and orientation sin
e the last lo
alization update: < Æx; Æy; Æ� >. This
hange is added

to ea
h parti
le's pose a

ording to the following equation:

pose

new

= pose

old

+ < Æx

0

; Æy

0

; Æ� > (20)

where Æx

0

and Æy

0

are Æx and Æy translated from the
oordinate system of the robot into the
oordinate

system of the parti
le (see Appendix A.9). Be
ause the odometry information is noisy, we assume that

36

motion updates de
rease the
ertainty in our pose estimate. For this reason, after ea
h motion update, the

probability of ea
h parti
le is de
ayed a

ording to the following equation:

p

new

= p

old

(1� �) (21)

In our implementation, we
hose the value 0:02 for �. This value was
hosen, without experimentation, so

that the probability would drop by half every
ouple of se
onds.

8.3 Observation Update

After the
urrent frame has been pro
essed by the vision module, the lo
alization module re
eives a list of

landmark observations. For our purposes, the �eld
onsists of 10 identi�able �xed landmarks: 6 bea
ons and

4 goal edges.

10

Ea
h observation
onsists of a landmark identity (e.g. yellow goal's left edge), a distan
e

estimate, d, a bearing estimate, �, and a probability, p̂, representing the
ertainty that the observed landmark

was identi�ed
orre
tly. These observations are used to update the landmark memory stru
ture, whi
h is

des
ribed in the next se
tion.

8.3.1 Landmark Memory

The landmark memory data stru
ture stores a history of re
ent observations in order to make a

urate

estimates of the robot's relative position to landmarks. For ea
h of the 10 landmarks, the landmark memory

maintains a list
ontaining past observations. Along with the observation itself, ea
h list entry in
ludes the

following data:

� �

2

d

: varian
e of distan
e estimate

� �

2

�

: varian
e of bearing estimate

� T : absolute time the observation was made

� �d: distan
e robot has moved sin
e this observation

� ��: total angle the robot has rotated sin
e this observation

An observation is modeled as a 2-d Gaussian distribution with mean < d; � > and varian
e < �

2

d

; �

2

�

>. The

initial varian
es are
al
ulated from d and p̂ using the following equations:

�

2

d

=

d

p̂ � 10

(22)

�

2

�

= tan

�1

�

W

b

d

�

(23)

where W

b

is the a
tual width of a bea
on. Be
ause the distan
e of a bea
on is more diÆ
ult to estimate

as it gets farther away, we made the distan
e error proportional to d. Also, we made the error inversely

proportional to our
ertainty in landmark identity so that false landmark sightings would generate estimates

with high varian
es. The bearing to a bea
on is a
tually easier to estimate as it gets farther away. For this

reason, we made the bearing varian
e inversely proportional to distan
e. These error estimates are
rude,

but we found them to be satisfa
tory in pra
ti
e.

When an observation is added to the list, the timestamp T is set to the
urrent time and �d and �� are

initialized to 0.

10

We
hose to use the left and right edges of the goals as landmarks, instead of the goals themselves, be
ause the goal edges

had more pre
ise lo
ations and were more numerous.

37

8.3.2 Removing Obsolete Observations

During every motion update (see Se
tion 8.2), the entries in the landmark memory are modi�ed to re
e
t

passing time and robot movement. For ea
h observation entry, the �d and �� values are in
reased a

ord-

ing to the odometry data returned by the movement module. The observation estimates are updated to

orrespond to the robot's new position and orientation. Also, the varian
es are in
reased proportionally to

the robot's movement. These updates are summarized by the following equations:

�d

0

= �d+

p

(Æx)

2

+ (Æy)

2

(24)

��

0

= �� + jÆ�j (25)

d

0

=

p

(d
os(�)� Æx)

2

+ (d sin(�)� Æy)

2

(26)

�

0

= atan2 (d sin(�)� Æy; d
os(�)� Æx)� Æ� (27)

�

2

d

0

= �

2

d

+

p

(Æx)

2

+ (Æy)

2

(28)

�

2

�

0

= �

2

�

+

jÆ�j

2

(29)

After the observation entries have been updated, we de
ide if the observation should remain in the list.

If the observation has a high varian
e (�

2

d

> 500mm or �

2

�

> 22

o

), then it is removed from the landmark

memory. Additionally, if the robot has traveled too far (�d > 150mm) or turned too mu
h (�� > 10

o

)

sin
e the observation was made, then the observation is thrown out. Finally, if the observation is too old

(time� T > 3s) then the entry is deleted. This way, even if the robot is standing still, old observations do

not stay around forever. All thresholds were
hosen without experimentation.

8.3.3 Merging Past Observations

For ea
h of the 10 �xed landmarks, the landmark memory
ontains a list of 0 or more relative position

estimates. To use this data for updating the parti
les, we must merge the entries within ea
h list to �nd a

single set of landmark observations.

As stated previously, observations in the landmark memory are modeled as 2-d Gaussians. We
hose this

distribution be
ause the theory behind merging Gaussian distributions is well-understood. Here, we treat the

distan
e and bearing estimates as independent distributions. Therefore, we
an perform a two-dimensional

merge by doing two independent one-dimensional merges. To merge two 1-d Gaussian with means and

varian
es (�

a

; �

2

a

) and (�

b

; �

2

b

), respe
tively, into a new distribution (�

merged

; �

2

merged

), we use the following

equations:

�

merged

=

�

2

a

�

b

+ �

2

b

�

a

�

2

a

+ �

2

b

(30)

�

2

merged

=

�

2

a

�

2

b

�

2

a

+ �

2

b

(31)

These operations are both
ommutative and asso
iative, so we are free to merge the observations in any

order. For ea
h landmark with at least one observation entry, we
ompute a merged position estimate to be

used for updating the parti
le probabilities.

8.3.4 Updating Probabilities

Using the set of merged estimates from the landmark memory, we update the probability, p

i

, of ea
h parti
le,

i, based on the posterior probability of making these observations assuming that the parti
le is the
orre
t

pose hypothesis. Here, we use only the bearing measurement of the observation. The distan
e information

is used at a di�erent stage (see Se
tion 8.3.6).

Given the parti
le's position and orientation along with information about the positions of all �xed

landmarks from an internal map, we
an
al
ulate the expe
ted bearing, �

expe
ted

for ea
h observed landmark.

38

If the di�eren
e between the measured and expe
ted bearings is small, then the parti
le is likely to be a

good estimate of our
urrent position and orientation. If the di�eren
e is large, the parti
le is probably a

bad estimate.

The posterior probability for a single observation is estimated by the following equation:

s(�

measured

; �

expe
ted

) =

�

e

�50!

2

if ! < 1

e

�50(2�!)

2

otherwise

(32)

where ! =

j�

measured

��

expe
ted

j

�

. The probability, p, of a parti
le is just the produ
t of these probabilities:

p =

Y

�

measured

s(�

measured

; �

expe
ted

) (33)

However, the parti
le probability is not simply set to this new value. To prevent o

asionally poor observa-

tions from
hanging the estimate too dramati
ally, we pla
e a threshold on how mu
h a probability estimate

an
hange in a single
y
le. Therefore, the new probability of a parti
le is
al
ulated by the following

equation:

p

new

=

8

<

:

p

old

+ 0:1 if p > p

old

+ 0:1

p

old

� 0:05 if p < p

old

� 0:05

p otherwise

(34)

8.3.5 Resampling

On
e the parti
le probabilities have been updated, the parti
les are resampled to move a higher density of

parti
les
loser to the most likely pose estimates. To do this, we
opy parti
les from an old parti
le list

to a new parti
le list in proportion to their probabilities. Higher probability parti
les are dupli
ated and

lower probability parti
les are thrown out. The resampling is performed su
h that the new parti
les list will

ontain about 90 parti
les. For a given parti
le, i, in the old list, the number of times that it will appear in

the new list is given by the following equation:

#

i

=

$

1

P

j

p

j

90p

i

%

(35)

After
opying over the old parti
les, triangulation estimates made from
ombinations of two or three bea
ons

are added until the list
ontains 100 parti
les. Ea
h of these parti
les are given a probability based on the

un
ertainty of the observations used in the
al
ulation. Our methods for triangulating the robot's position

are dis
ussed in the following two se
tions.

8.3.6 Two Bea
on Triangulation

In this approa
h, we use both the distan
e and angle estimates of the bea
ons, provided by high level

vision, to determine the position and orientation of the robot in the global referen
e frame. The in
lusion

of bea
on distan
e estimates (in addition to the angle that the bea
on is estimated to make with the robot)

in lo
alization does produ
e robot position estimates that are more error prone than the estimates obtained

using the angle information alone (i.e. three bea
on triangulation, see Se
tion 8.3.7). But we found that when

the robot position estimates obtained using this te
hnique are used as seed values in parti
le �ltering (with

an appropriate probability value) in addition to the estimates obtained using three bea
on triangulation, the

results obtained are more a

urate than those with just the three bea
on estimates as the seed values.

Given two bea
on distan
es and bearings with respe
t to the robot's lo
al
oordinate frame, we
an draw

two
ir
les, one around ea
h of the bea
ons with radius equal to the distan
e (estimated) of the bea
on from

the robot. The
ir
les interse
t at two points (or none when the estimates are bad in whi
h
ase they are

not used in
al
ulations), one of them being the
orre
t estimate of the robot's position (see Figure 8).

We �rst use the estimated distan
es from the robot to the bea
ons to determine the robot's position with

respe
t to a lo
al frame with the x-axis along the line joining the two bea
ons. This is then
onverted to

39

 Beacon 1

 Beacon 2

 (x_b1,y_b1)

 (x_b2,y_b2)

y

x

d2

d1

 D
which is eliminated using
additional constraints.

Location of the

associated
variances.

robot and the Alternative location

Figure 8: Lo
alization using two bea
ons.

the global referen
e frame using the known geometry of the �eld. The global orientation of the robot is then

determined using the robot's
al
ulated position and estimated distan
es and angles to the bea
ons. We

a
tually
al
ulate both possible robot poses (position and orientation) but then eliminate one of them using

onstraints (for example, we
he
k if the position is on the �eld). Then, we need to determine the varian
es

in the estimated pose. To do so we basi
ally �nd the partial derivatives of the expressions for pose with

respe
t to the variables in the system. We do this starting from the �nal expression and move ba
kwards to

the initial expressions so that we have the \
hange" in pose expressed in terms of the
hange in the distan
e

and bearing estimates of the bea
ons/markers (known values), thereby obtaining the varian
e estimates.

8.3.7 Three Bea
on Triangulation

The image of a distant landmark
an be quite small with respe
t to the size of an image pixel. This
an result

in a la
k of a

ura
y in the distan
e estimates, but it does not detra
t from the angle estimates. Be
ause of

this, it is espe
ially desirable to be able to estimate the Aibo's lo
ation using only angle information from

the landmarks. This method eliminates the ina

ura
y in the distan
e estimates, but it has the disadvantage

of requiring knowledge about three landmarks to be appli
able.

The di�eren
e between the horizontal angles of any two landmarks,
ombined with the a
tual positions

40

X

Y

A B

C

This circle arc is the
locus of points P such
that angle BPC is the
observed angle between
beacons B and C.

This arc is the set of points
determined by angle APB. The intersection

of the two arcs
is our estimate
of the AIBO’s
actual location,
shown here with
its variance ellipse.

P

Figure 9: Three Bea
on Lo
alization. The horizontal angles between bea
ons A, B, and C are used to

onstru
t two
ir
le ar
s. Their interse
tion is the three-bea
on estimate of the Aibo's lo
ation.

of those landmarks on the �eld, yields a
ir
le ar
 of possible lo
ations for the Aibo. Three landmarks yield

two
ir
le ar
s (a
tually three, but the third is always redundant), whose interse
tion is our position estimate

a

ording to this method (Figure 9). The robot's orientation
an then be determined from its position and

the horizontal angle of any landmark.

8.3.8 Random Movement

In the �nal update step, the parti
les are moved lo
ally in a random fashion. Parti
les with higher prob-

abilities are moved less. This pro
ess performs a probabilisti
 sear
h over nearby hypotheses. The update

al
ulation is summarized as follows:

x

0

= x+ 100mm � (1� p

0

) � rand[�1; 1℄ (36)

y

0

= y + 100mm � (1� p

0

) � rand[�1; 1℄ (37)

�

0

= � + 30

o

� (1� p

0

) � rand[�1; 1℄ (38)

41

Parti
les
an be moved up to 100mm in x and y and rotated up to 30

o

. These values were
hosen without

experimentation.

8.4 Pose Estimation

The �nal stage in the lo
alization pro
ess is �nding a pose estimate from the parti
le set. This estimate is

omputed in two steps: �nding the largest
luster of parti
les and averaging the parti
les within that
luster.

To �nd the largest
luster, we divide the spa
e of possible x,y,� values into 10� 10� 10
ells. We then

sear
h through all possible 2� 2� 2 groups of adja
ent
ells to �nd the group with the most parti
les. The

x,y,� values for ea
h parti
le in the group are then averaged a

ording to the following equation:

pose =

*

1

m

m

X

i=1

x

i

;

1

m

m

X

i=1

y

i

; atan2

m

X

i=1

sin(�

i

);

m

X

i=1

os(�

i

)

!+

(39)

where m is the number of parti
les in the group and < x

i

; y

i

; �

i

> is the pose of parti
le i. Noti
e that the

� values
annot simply be averaged be
ause angle values wrap around.

Breaking the values into 10�10�10
ells and sear
hing the 2�2�2 groups is an admittedly sup-optimal

approa
h in that it risks missing
on
entrations of parti
les that span the boundaries of 3 adja
ent
ells.

We leave more prin
ipled approa
hes to future work, but found that this method was straightforward to

implement and it worked well in pra
ti
e.

In addition to the pose estimate, the robot's behavior is also dependent upon its
ertainty in that estimate.

We
al
ulate our
ertainty as the density of parti
le probability in the largest
luster:

ertainty =

1

n

m

X

i=1

p

i

(40)

where n is the total number of parti
les and p

i

is the probability of parti
le i. Based on this
ertainty

value, the robot
an de
ide whether to perform a lo
alization-dependent skill (e.g. shot on goal) or take an

information-gathering a
tion (i.e. sear
h for landmarks).

9 Communi
ation

Colle
tive de
ision making is an essential aspe
t of a multiagent domain su
h as robot so

er. The robots

thus need the ability to share information among themselves. In this se
tion we dis
uss the methodologies

we adopted to enable
ommuni
ation and the various stages of development of the resulting
ommuni
ation

module.

9.1 Initial Robot-to-Robot Communi
ation

Our initial goal was to understand the
apabilities and limitations of the wireless
ommuni
ation
hannel

between the various robots. Although the rules required us to use TCPGateway for
ommuni
ation during

the games, we wanted to examine other options that might be useful during non-game situations.

We
reated a simple server and a
lient that used the User Datagram Proto
ol (UDP). We
hose UDP

be
ause it typi
ally provides greater bandwidth than the alternative, TCP. Our intent was to determine how

qui
kly we
ould transfer data between robots and to simply get used to writing appli
ations that would

allow the robots to
ommuni
ate.

The �rst server that we
reated generated a few bytes of data and tried to broad
ast it to a
lient. The

lient program simply gathered this data as it re
eived it. We ran the server and the
lient on two di�erent

robots and monitored their a
tions by telnetting into them.

On
e that worked, we extended our
ommuni
ation modules to interfa
e with the robot's me
hani
al

parts. The next server that we
reated
aptured the joint angles of the robot and broad
ast them to the

42

lient. The
lient gathered the data and set its own joint positions a

ordingly. Thus, when we moved

the legs of the server robot, the
lient robot would move it's legs by the same amount, thus a
ting as a

master-slave (puppet) interfa
e.

As we be
ame familiar with the networking interfa
es of the robot, we
ontinued to explore the various

uses of
ommuni
ation. We streamed images from the robot's
amera to a PC with both UDP and TCP,

reated a hierar
hy of single-master, multiple-slaves that enabled one robot to \lead" a team of robots, and

oded a remote-
ontrol program that we
ould use to
ontrol the Aibo from a PC. All of these experiments

provided valuable feedba
k that we later used when
reating both our oÆ
ial robot-to-robot
ommuni
ation

module (des
ribed below) and UT Assist (Se
tion 14).

9.2 TCP Gateway

On
e we were familiar with the stru
tures that the robots use to
ommuni
ate, we began implementing

a
ommuni
ation module. TCPGateway (the required interfa
e for oÆ
ial robot-to-robot
ommuni
ation

during games) abstra
ted away most of the low-level networking, providing a standard Open-R interfa
e in

its pla
e. The most diÆ
ult part of getting TCPGateway working was understanding the organization of

the
on�guration �les.

The TCPGateway
on�guration �les basi
ally insert two network addresses and ports in the middle of

an Open-R subje
t/observer relationship. This
reates the following situation:

� Instead of sending data dire
tly to the intended observer, the subje
t on the initiating robot sends

data to a TCPGateway observer.

� The TCPGateway module on the initiating robot has a spe
i�

onne
tion on a unique port for data

owing in that dire
tion, and sends the data from the subje
t over that
onne
tion to the PC.

� The PC, whi
h has been
on�gured to map data from one in
oming port to one outgoing port, sends

the subje
t's data out to the re
eiving robot on a spe
i�
 port.

� The TCPGateway module on the re
eiving robot pro
esses the data that it re
eives on this port and

sends the data to the intended observer.

All of the mappings des
ribed above were de�ned in two �les on ea
h robot (CONNECT.CFG and ROBOTGW.CFG)

and in two �les on the PC (CONNECT.CFG and HOSTGW.CFG).

9.3 Message Types

One of the
hallenges we fa
ed regarding
ommuni
ation was the possibility that multiple types of messages

would need to be sent. We
ould theoreti
ally handle this with a stage in the brain loop that
ould read and

distribute messages appropriately. As we pro
eeded, however, this option be
ame more and more unwieldy.

Variables and data that would be used in one part of a program would be read and set in another part,

perhaps even in another �le. What we needed was the ability to
reate an arbitrary number of di�erent

message types, su
h that anywhere in the program, we
ould request from the
ommuni
ation system the

next message of that type.

Our �rst implementation kept the same
ommuni
ation sta
k, but when a request was made, the type

of message was passed as a parameter. The
ommuni
ation system would then sear
h through the sta
k for

the next message of that type, remove it from the sta
k, and return it. This worked �ne, but we qui
kly

realized that if any one type of message
eased to be
onsumed, it
ould have serious rami�
ations in terms

of the time needed to retrieve other types of messages.

To solve this, we implemented an array of
ommuni
ation sta
ks, one for ea
h type of message. This

gave us a
onstant-time fet
h for the next message of any type. As messages arrived, they were pro
essed by

their type and pla
ed into the
orre
t sta
k. This way, messages related to global maps
ould be retrieved

and used in the
ode that a
tually handles the operation of global maps, while messages relating to strategy

hanges
ould be handled in a di�erent part of the
ode.

43

Brain MovementModule

OVirtualRobotComm

wireless network

Figure 10: A high level view of the main Open-R obje
ts in our agent. The robot sends visual data to

the Brain obje
t, whi
h sends movement
ommands to the MovementModule obje
t, whi
h sends set points

to the PID
ontrollers in the robot. The Brain obje
t also has network
onne
tions to teammates' Brain

obje
ts, the Robo
up game
ontroller, and our UT Assist
lient (Se
tion 14). Note that this �gure omits

sensor readings obtained via dire
t Open-R API
alls.

9.4 Queuing Messages

When we �rst tested our new multi-type
ommuni
ation system, we found that some of our messages were

not being re
eived. More spe
i�
ally, the �rst message of any brain
y
le was sent, but any other messages

sent later in that brain
y
le would be dropped. At �rst we thought it was just a
onne
tivity issue. However,

when we reversed the order of our messages, we found that all but the �rst were not delivered.

Further investigation found that the TCPGateway obje
t was not able to pro
ess the messages we were

sending qui
kly enough. We had enough bandwidth, and our robots were
onne
ted, but TCPGateway was

just too slow to handle all the overhead for ea
h message. The obvious solution to this was to queue our

messages. Thus, when a request to send a message was made somewhere in the
ode, what would a
tually

happen is that the message would be put into a queue, where it would sit until the end of the brain
y
le.

At the end of the brain
y
le, the messages were stit
hed together into a long byte stream, and then sent

o� to the other robots. This meant that we
ould do all of our
ommuni
ation with only one TCPGateway

ommuni
ation per brain
y
le, whi
h
ut ba
k on the total overhead.

10 General Ar
hite
ture

Due to our bottom-up approa
h, we did not address the issue of general ar
hite
ture until some impor-

tant modules had already taken shape. We had some
ode that
obbled together our vision and movement

omponents to produ
e a rudimentary but fun
tional goal-s
oring behavior (see Se
tion 12.1.1). Although

this agent worked, we realized that we would need a more stru
tured ar
hite
ture to develop a more so-

phisti
ated agent, parti
ularly with the number of programmers working
on
urrently on the proje
t. The

de
ision to adopt the ar
hite
ture des
ribed below did not
ome easily, sin
e we already had something that

worked. Implementing a
leaner approa
h stopped our momentum in the short term and required some team

members to rewrite their
ode, but we feel the e�ort proved worthwhile as we
ontinued to
ombine more

independently-developed modules.

We designed a framework for the modules with the aim of fa
ilitating further development. We
onsidered

taking advantage of the operating system's inherent distributed nature and giving ea
h module its own

pro
ess. However, we de
ided that the task did not require su
h a high degree of
on
urrent
omputation,

so we organized our
ode into just two separate
on
urrent obje
ts (Figure 10).

We en
apsulated all of the
ode implementing low-level movement (Se
tion 5.2.1) in the MovementMod-

ule obje
t. This module re
eives Open-R messages di
tating whi
h movement to exe
ute. Available leg

movements in
lude lo
omotion in a parti
ular dire
tion, speed, and turning rate; any one of a repertoire of

44

ki
ks; and getting up from a fallen position. Additionally, the messages may
ontain independent dire
tives

for the head, mouth, and tail. The MovementModule translates these
ommands into sequen
es of set points,

whi
h it feeds as messages into the robot's OVirtualRobotComm obje
t. Note that this
ode inhabits its own

Open-R obje
t pre
isely so that it
an supply a steady stream of
ommands to the robot asyn
hronously with

respe
t to sensor pro
essing and deliberation. For further details on the movement module, see Se
tion 5.2.1.

The Brain obje
t is responsible for the remainder of the agent's tasks: a

epting messages
ontaining

amera images from OVirtualRobotComm,
ommuni
ating over the wireless network, and de
iding what

movement
ommand messages to send to the MovementModule obje
t. It
ontains the remaining modules,

in
luding Vision, Fall Dete
tion, Lo
alization, and Communi
ation. These
omponents thus exist as C++

obje
ts within a single Open-R obje
t. The Brain itself does not provide mu
h organization for the modules

that
omprise it. In large part it serves as a
ontainer for the modules, whi
h are free to
all ea
h other's

methods.

From an implementation perspe
tive, the Brain's primary job is to a
tivate the appropriate modules at

the appropriate times. Our agent's \main loop" a
tivates whenever the Brain re
eives a new visual image

from OVirtualRobotComm. Other types of in
oming data, mostly from the wireless network, reside in

bu�ers until the
amera instigates the next Brain
y
le. Ea
h
amera image triggers the following sequen
e

of a
tions from the Brain:

Get Data: The Brain �rst obtains the
urrent joint positions and other sensor readings from Open-R. It

stores this data in a pla
e where modules su
h as Fall Dete
tion
an read them. This means that

we ignore the joint positions and sensor readings that OVirtualRobotComm generates between vision

frames.

Pro
ess Data: Now the Brain invokes all those modules
on
erning interpreting sensor input: Vision,

Lo
alization, and Fall Dete
tion. Note that for simpli
ity's sake even Communi
ation data waits until

this step, syn
hronized by inputs from the
amera, before being pro
essed. Generally the end result of

this step is to update the agent's internal representation of its external environment: the global map

(see Se
tion 11).

A
t: After the Brain has taken
are of sensing, it invokes those modules that implement a
ting, des
ribed

in Se
tions 12 and 13. These modules typi
ally don't dire
tly a

ess the data gathered by the Brain.

Instead they query the updated global map.

11 Global Map

Early in the development of our so

er playing agent, parti
ularly before we had fun
tioning lo
alization

and
ommuni
ation, we
hose our a
tions using a simple �nite state ma
hine (see Se
tion 12). Our sensory

input and feedba
k from the Movement Module di
tated state transitions, so sensations had a relatively

dire
t in
uen
e on behavior. However, on
e we developed the
apability to lo
ate our agents and the ball

on the �eld and to
ommuni
ate this information, su
h a dire
t mapping be
ame impossible. We
reated

the global map to satisfy the need for an intermediate level of reasoning. The global map
ombines the

outputs of Lo
alization from Vision and from Communi
ation into a
oherent pi
ture of what is happening

in the game, and it provides methods that interpret this map in meaningful ways to the
ode that governs

behavior.

11.1 Maintaining Lo
ation Data

When a robot
omputes new information about the lo
ation of any parti
ular obje
t on the �eld, it usually

merges the new estimate of position with the
urrent estimate of position that is stored in its global map

(see Se
tion 8.3.3).

As time passes, the error estimate for all of the information in the global map in
reases. This degradation

of information is in
luded to more a

urately model the rapid rate of
hange in the state of the game. The

45

idea is to make the degradation smooth to re
e
t the maximum
hange that we are ready to allow (i.e. the

hange that we think
ould have happened) sin
e the last update. The approa
h used here is to estimate a

maximum 'velo
ity' by whi
h we assume the obje
t
an move along the x and the y axes. We then use this

velo
ity to
al
ulate the maximum distan
e the obje
t
ould have moved along the axes in the time sin
e the

last update. The estimated
hange, �

hange

, is statisti
ally added to the lo
ation's un
ertainty in a

ordan
e

with the formula:

�

updated

=

q

�

2

previous

+ �

2

hange

(41)

For example, if we
onsider the modeling of the opponents, we want our estimates of the opponents to be

as a

urate as possible and we do not want new estimates to o

ur every frame. We would ideally want to be

able to merge estimates from the
urrent frame with those in the previous frame, wherever possible, so that

we
an a
tually map the motion of the opponents. At the same time, we may have spurious dete
tions every

on
e in a while and if they are not seen in su

essive frames, we want these estimates to disappear qui
kly.

So for opponents we use an arti�
ially high 'velo
ity' su
h as 1500 mm/s (determined by experimentation).

On the other hand we want the estimates of the ball, robot position and those of the teammates to degrade

depending on some 'velo
ity' that re
e
ts their a
tual motion. So we
hoose the velo
ity for teammate

motion as 300 mm/s (we do not think any team
an move any faster than that as yet) and that for the ball

as 1000 to 1500 mm/s be
ause the ball
an move about that fast after a single powerful ki
k. These values

were all determined experimentally and seem to provide reasonable performan
e in terms of how we would

like our estimates to be updated.

11.2 Information from Teammates

Ea
h robot periodi
ally sends information from its global map to ea
h of its teammates. This transmitted

information in
ludes:

1. The lo
ation of the robot, along with an error estimate.

2. The lo
ations of any opponents of whi
h the robot
urrently is aware, along with error estimates.

3. The lo
ation of the ball, along with an error estimate.

When robot A re
eives teammate position information from robot B, robot A always assumes that B's

estimate of B's position is better than A's estimate of B's position. Therefore, robot A simply repla
es it's

old position for B with the new position.

When a robot re
eives opponent information from another robot, it updates it's
urrent estimate of

opponent lo
ations as des
ribed in Se
tion 4.6.

If robot A has seen the ball re
ently when it re
eives a ball position update from robot B, robot A ignores

B's estimate of ball position. If robot A hasn't seen the ball re
ently, then it merges its
urrent estimate of

the ball's position with the position estimate that it re
eives from robot B.

The basi
 idea behind having a global map is to make sharing of information possible so that the team

onsisting of individual agents with limited knowledge of their surroundings
an pool the information to

fun
tion better as a team. The aim is to have
ompletely shared knowledge but the extent to whi
h this

su

eeds is dependent upon the ability to
ommuni
ate. Sin
e the
ommuni
ation (see Se
tion 9) is not fully

reliable, we have to design a good strategy (Se
tion 12 des
ribes our strategy and behaviors) that uses the

available information to the maximum extent possible. Other modules
an a

ess the information in the

GlobalMaps using the a

essor fun
tions (predi
ates) des
ribed in the following se
tion.

11.3 Providing a High Level Interfa
e

From a high level perspe
tive, the only data that the global map provides to other modules are the es-

timated positions of the ball and the robots on the �eld, along with degrees of un
ertainty about these

46

estimates. However, the global map also houses an array of fun
tions on these data, to prevent di�erent

portions of the behavior
ode from repli
ating
ommonly used predi
ates and high level queries. See Ta-

ble 13 for a
omplete list of these fun
tions, most of whose names are
lear indi
ators of their fun
tionality.

Note that they range from relatively low level methods that return the position of an individual robot

(getTeamMembers) to relatively high level methods su
h as NumOpponentsWithinDistan
e. They in
lude

ta
ti
al
onsiderations, su
h as whether IAmClosestToBall, as well as methods relative to our strategi
 roles

(see Se
tion 13.2.1), su
h as GetDistan
eFromSupporter. Finally, methods su
h as AmIInDefensiveZone

and IsDefenderWellLo
alized provide a more abstra
t interfa
e to the position estimates.

getID GetDistan
eFromDefender InLeftThird

getTeamMembers GetDistan
eFromKeeper InCentralThird

getOpponents GetAtta
kerRelativePosition InRightThird

getBall GetSupporterRelativePosition InTopQuarter

getMyPosition GetDefenderRelativePosition InOwnHalf

adjustRelativeBall GetKeeperRelativePosition IsLower

wellLo
alized GetAtta
kerAbsolutePosition InOwnGoalBox

ballOnField GetSupporterAbsolutePosition AmILeftMost

getBallDistan
eFromOurGoal GetDefenderAbsolutePosition AmIRightMost

getRelativeBall GetKeeperAbsolutePosition GetLeftPosAngle

getRelativeOrientation IsAtta
kerWellLo
alized GetRightPosAngle

getRelativeOpponentGoal IsSupporterWellLo
alized OpponentsOnLeft

getRelativeOwnGoal IsDefenderWellLo
alized OpponentsOnRight

getRelativeOpponents IsKeeperWellLo
alized NumOpponentsOnLeft

getRelativeTeamMembers BallInOwnGoalBox NumOpponentsOnRight

GetRelativePositionOf BallInOppGoalBox OnOurSideOfTheField

GetRelativePositionOfTeamRel BallInOurHalf OnLeftSideOfTheField

HeadingToOffPost AmIInDefensiveZone IAmClosestTo

HeadingToDefPost NearOwnGoalBox IAmClosestToBall

GetClosestCorner NumberOfTeamMatesInOpponentHalf NumOpponentsWithinDistan
e

Distan
eToOffPost NumberOfTeamMatesInOwnHalf GetRelativePositionTo

Distan
eToDefPost HeadingToOppGoal InZone

GetDefensivePost HeadingToOwnGoal Approa
hingZone

GetDistan
eFromAtta
ker HeadingToOppLeftCorner

GetDistan
eFromSupporter HeadingToOppRightCorner

Table 13: The predi
ates that GlobalMap provides.

12 Behaviors

In this se
tion we des
ribe the robot's so

er-playing behaviors. In our development, we had relatively little

time to fo
us on behaviors, spending mu
h more of our time building up the low-level modules su
h as

walking, vision, and lo
alization. As su
h, the behaviors we des
ribe here are far from ideal. We anti
ipate

overhauling this
omponent of our
ode base should we parti
ipate in future
ompetitions. Nonetheless, we

present a detailed des
ription for the sake of
ompleteness, and to illustrate what was possible in the time

we had to work.

12.1 Goal S
oring

One of the most important skills for a so

er-playing robot is the ability to s
ore, at least on an empty goal.

In this se
tion we des
ribe our initial solution that was devised before the lo
alization module was developed,

47

followed by our eventual behavior that we used at RoboCup 2003.

12.1.1 Initial Solution

On
e we had the initial movement and vision modules in pla
e, we were in a position to \
lose the loop" by

developing a very basi
 goal s
oring behavior. The goal was to test the various modules as they intera
ted

with ea
h other. Sin
e neither the lo
alization module (Se
tion 8) nor the general ar
hite
ture (Se
tion 10)

had been implemented by this time, this behavior was entirely rea
tive.

This goal s
oring behavior, implemented as a Finite State Ma
hine (FSM), assumes that the robot is

pla
ed at a point on the �eld su
h that the distan
e between the orange ball and the robot is not more than

one half the length of the �eld (i.e. the ball is at a distan
e where it
an be seen by the robot). A point to

note here is that this
onstraint
ould have been removed by in
orporating a \random walk" sequen
e into

the behavior. The robot �rst performs a three-layer head s
an to determine if it
an \see" the ball at its

urrent position. If the ball is not in its visual �eld at this stage, the robot starts stra�ng (turning 360

Æ

about its
urrent position) in sear
h of the ball. In either
ase, the dete
tion of a ball in a single visual

frame
auses the robot to stop and determine if the ball has a
tually been seen (noise in the image
olor

segmentation
an sometime
ause false ball dete
tions in high level vision). On
e the ball is in sight, the

robot walks towards it by tra
king the
entroid of the ball with its head and moving its body in whatever

dire
tion the head points to. This walking state
ontinues until either the ball is lost from the visual frame

(in whi
h
ase the robot goes ba
k to sear
hing for the ball) or the robot rea
hes a point suÆ
iently
lose

to the ball, as determined by its ne
k angles at that point. The thresholds in the ne
k angles are set su
h

that the robot stops with the ball right under its head. Next, the robot strafes around the ball with its head

held at 0

Æ

tilt), sear
hing for the o�ensive goal (blue or yellow depending on whether the robot is on the

red team or the blue team). On
e the goal is found, the robot
he
ks to ensure that the ball is still under

its nose and then tries to ki
k the ball into the goal. If the robot �nds that it has lost the ball (it sometimes

pushed it away a

identally while stra�ng), it goes ba
k to sear
hing for the ball.

This behavior, despite being extremely rudimentary, helped us understand the issues involved in the

intera
tion/
ommuni
ation between modules. It also served to illustrate the importan
e of a good ar
hite
-

ture in implementing
omplex behaviors. At the time of the Ameri
an Open, this was the only goal-s
oring

behavior that we had implemented.

12.1.2 In
orporating Lo
alization

When lo
alization
ame into pla
e, we repla
ed the above behavior using stra�ng and a single ki
k with a

more
omplex behavior involving the
hin pin
h turn. In the new behavior, the de
ision about whi
h ki
k to

use is made a

ording to knowledge about where on the �eld the robot is and whether there are opponents

nearby.

Figure 11 summarizes the ki
king strategy used when no opponents are dete
ted nearby. If the robot is

on the o�ensive half of the �eld and is not near any walls, it follows the natural strategy of turning toward

the goal and then ki
king the ball. On the quarter of the �eld nearest the o�ensive goal, the front power

ki
k is used rather than the fall forward ki
k. This is be
ause we believe the front power ki
k to be more

a

urate than the fall forward ki
k, although less powerful.

When the robot is in the defensive half of the �eld, it ki
ks toward the far same-side
orner (that is, if

it is on the left half of the �eld, it ki
ks toward the o�ensive-half left
orner). The reasoning behind this

was that when the ball is in the robot's defensive half, the most important thing is to
lear the ball to the

other half of the �eld. Sin
e other robots are generally more likely to be in the
enter of the �eld, a good

strategy for a

omplishing this is to ki
k toward the outside so that the ball will on average be allowed to

travel farther before its path is obstru
ted.

When the robot is near the wall and fa
ing it, the head ki
k is typi
ally used.

11

This is
hie
y be
ause

11

The ex
eption to this is when the robot is
lose to and dire
tly fa
ing the ba
k wall near its defensive goal, a situation

whi
h o

urs relatively rarely. In this
ase, the yoshi ki
k is used, be
ause under these
ir
umstan
es it is likely to su

eed at

pushing the ball in the
orre
t dire
tion, and there is also a good
han
e that it will ki
k the ball farther than the head ki
k.

48

corner, do not turn ball in front
of own goal, kick with fall
forward kick or head kick

No turn, or yoshi kickkick with head kick

Chin pinch turn toward far same−side

Chin pinch turn toward
far same−side corner,
do not turn ball in front
of own goal, kick with
head kick or fall foward
kick

Chin pinch turn toward goal,
kick with fall forward kick

kick with front power kick
Chin pinch turn toward goal,

Chin pinch turn toward
goal, kick with head kick
or front power kick

Offensive
Goal

Defensive
Goal

Figure 11: Ki
king strategy when no nearby opponents are dete
ted

49

we want to use the
hin pin
h turn as little as possible when we are along the wall. The more the robot runs

into the wall while moving, the larger the dis
repan
y be
omes between the a
tual distan
e traveled and the

information that odometry gives to lo
alization. Be
ause the FSM uses lo
alization to determine when to

swit
h from
hin pin
h turning to ki
king, the longer the robot uses a
hin pin
h turn along a wall, the less

likely it is to stop turning at the right time. So, it is typi
ally a better strategy when very near a wall and

fa
ing it to head ki
k the ball along the wall rather than trying to turn with the ball to an exa
t angle and

then ki
k with a more powerful ki
k.

Another situation where the head ki
k is used is when we would otherwise need to turn more than 180

degrees with the ball. This situation typi
ally arises when the robot is in the defensive half and needs to

avoid turning in a way that will pass the ball between it and its own goal. A 360-degree
hin pin
h turn

takes approximately 5 se
onds. Thus, given that many of our ki
ks take a small amount of time to prepare

before hitting the ball away,
hin pin
h turning for more than 180 degrees
arries the danger of putting us

in violation of the 3-se
ond holding rule. Therefore, in situations where we need to turn through some angle

� > 180 degrees, we instead turn through � � 80 (or 180, if �� 80 > 180) degrees and then head ki
k in the

appropriate dire
tion.

If opponents are dete
ted nearby, the robot simply ki
ks with the head ki
k in the dire
tion of the goal

unless the goal is dire
tly behind the robot, in whi
h
ase it ki
ks with the yoshi ki
k. The reasoning behind

this is the same as the reasoning just des
ribed underlying the
hoi
e of the head ki
k near walls.

12.1.3 A Finite State Ma
hine

Our behaviors are implemented by a Finite State Ma
hine (FSM), wherein at any time the Aibo is in one of

a �nite number of states. The states
orrespond roughly to primitive behaviors, and the transitions between

states depend on input from vision, lo
alization, the global map, and joint angles. This se
tion des
ribes

the FSM underlying our main goal-s
oring behavior. As we developed our strategy more fully, this be
ame

the behavior of the atta
ker (see Se
tion 13.2.1). The behaviors of the other two roles are dis
ussed in

Se
tion 13.2.1 as well.

The main goal s
oring states are listed here. Note that the a
tions taken in these states are exe
uted

through the Movement Interfa
e, and they are des
ribed in more detail in Se
tion 5.2.2.

� Head S
an For Ball: This is the �rst of a few states designed to �nd the ball. While in this state, the

robot stands in pla
e s
anning the �eld with its head. We use a two-layer head s
an for this.

� Turning For Ball: This state
orresponds to turning in pla
e with the head in a �xed position (pointing

ahead but tilted down slightly).

� Walking To Unseen Ball: This state is for when the robot does not see the ball itself, but one of its

teammates
ommuni
ates to it the ball's lo
ation. Then the robot tries to walk towards the ball. At

the same time, it s
ans with its head to try to �nd the ball.

� Walking To Seen Ball: Here we see the ball and are walking towards it. During this state the robot

keeps its head pointed towards the ball and walks in the dire
tion that its head is pointing. As the

robot approa
hes the ball, it
aptures the ball by lowering its head right before transferring into the

Chin Pin
h Turn state.

� Chin Pin
h Turn: This state pin
hes the ball between the robot's
hin and the ground. It then turns

with the ball to fa
e the dire
tion it is trying to ki
k.

� Ki
king: While in this state, the robot is ki
king the ball.

� Re
over From Ki
k: Here the robot updates its knowledge of where the ball is and bran
hes into

another state. Both of these pro
esses are in
uen
ed by whi
h ki
k has just been performed.

50

� Stopped To See Ball: In this state, the robot is looking for the ball and has seen it, but still does not

have a high enough
on�den
e level that it is a
tually the ball (as opposed to a false positive from

vision). To verify that the ball is there, the robot momentarily freezes in pla
e. When the robot sees

the ball for enough
onse
utive frames, it moves on to Walking To Seen Ball. If the robot fails to see

the ball, it goes ba
k to the state it was in last (where it was looking for the ball).

In order to navigate between these states, the FSM relies on a number of helper fun
tions and variables

that help it make state transition de
isions. The most important of these are:

� BallLost: This Boolean variable denotes whether or not we are
on�dent that we see the ball. This is

a sti
ky version of whether or not high level vision is reporting a ball, meaning that if BallLost is true,

it will be
ome false only if the robot sees the ball (a

ording to vision) for a number of
onse
utive

frames. Similarly, a few
onse
utive frames of not seeing the ball are required for BallLost to be
ome

true.

� NearBall: This fun
tion is used when we are walking to the ball. It indi
ates when we are
lose enough

to it to begin
apturing the ball with a
hin pin
h motion. It is determined by a threshold value for

the head's tilt angle.

� DetermineAndSetKi
k: This fun
tion is used when transitioning out of Walking To Seen Ball upon

rea
hing the ball. It determines whether or not a
hin pin
h turn is ne
essary, what angle the robot

should turn to with the ball before ki
king, and whi
h ki
k should be exe
uted.

Finally, an overview of the rules that govern how the states transition into one another is given in

Figure 12.

12.2 Goalie

In this se
tion we detail our initial (pre-lo
alization) and �nal (RoboCup-2003) goalie behaviors.

12.2.1 Initial Solution

Like the rest of our behaviors, our goalie behavior used an FSM for
ontrol. The initial behavior was as

follows: On
e it started, the �rst thing would be to look around for the goal, go to it, turn around and

stand there, in front of the goal, looking forward to see if it saw the ball. If it saw the ball, it would start

to \tra
k" it, i.e. keep its eye on the ball and turn in pla
e if ne
essary. If the ball got too
lose, it would

stret
h its arms out, hoping to blo
k the ball (Figure 13).

Closeness to the ball was based on the head tilt angle. Sin
e we didn't have lo
alization working properly

at the time, this was the only way to reliably tell distan
e. The goalie would tra
k the ball, whi
h entails

moving the head su
h that the ball is in the
enter of the �eld of vision (and turning the body in pla
e if

turning the head isn't enough). Therefore the head would always be pointed towards the ball and the
loser

the ball, the larger the tilt angle (Figure 14). The angles for being \
lose" were determined by trying various

angles on the �eld.

This simple approa
h had many problems, some due to its simpli
ity and some due to inabilities of our

Aibos at a lower behavioral level. For example, tra
king the ball didn't work fast enough for the Aibo to

rea
t even to slow shots
oming towards it. The ball would just roll by the goalie who would lose sight of it

be
ause its head wouldn't get moved in time to tra
k the ball.

The most important problem was the passiveness of our goalie. Judging that we would be dead in the

water if we just waited passively for the ball to slowly roll up to us, we de
ided to take a more a
tive

approa
h. Our revised goalie waited in its goalbox until the ball
ame within a safety distan
e and then it

walked to the ball and attempted to
lear it. This approa
h worked mu
h better but it also brought along

some new problems to solve:

51

Chin Pinch
Turn

Recover
From KickKicking

Turning
For Ball

Walking To
Seen Ball

Head Scan
For Ball

Walking To
Unseen Ball

desired direction.
Robot is facing Kick is

finished.

Ball was kicked
forwards.

Ball kicked to side
or backwards

DetermineAndSetKick says
Chin Pinch Turn is not necessary.

NearBall is true and
Chin Pinch is executed.

The robot has turned
at least 360 without seeing
the ball, and the Global Map
knows where the ball is.

The Global Map doesn’t
know where the ball is.

Enough time has elapsed
without finding the ball.

BallLost
becomes true.

Ball is seen.

Figure 12: The �nite state ma
hine that governs the behavior of the atta
king robot.

52

Closeness threshold

(a) (b)

Figure 13: First attempt at a goalie: (a) it waits for the ball to get within a
loseness threshold and then

(b) stret
hes its arms out to blo
k the ball. This approa
h didn't work well sin
e ball tra
king was slow. By

the time the goalie stret
hed, the ball would be long gone.

Tilt angle

Figure 14: Closeness to ball was based on the how large the head tilt angle was.

53

� How
lose should the safety distan
e be? We don't want the goalie to leave the goal to
lear a ball at

mid�eld, but if it waits too long, the opponent with the ball will have too great a
han
e of shooting

a fast shot into the goal.

� How should the robot
lear the ball? If it just stret
hes as it did before, it won't be pushing the ball

away from itself.

� When and how should it get ba
k in position? There is often an opponent behind or next to the ball,

so after attempting to
lear it, the goalie needs to make sure the ball's not still right in front of it. On
e

it's
leared the ball, what is the qui
kest way to go ba
k to position in the goalbox while minimizing

the possibility of being
aught unaware of the ball
oming ba
k to the goal?

The �rst method we used for
learing the ball was the simple stret
hing out to the sides, whi
h worked

sometimes but usually didn't
lear the ball very far and just left it in pla
e or pushed it to the side a little.

This motivated us to experiment with di�erent ki
king styles. Some ki
ks we tried were the
hest push ki
k,

the arms together ki
k, the fall forward ki
k and the \right (or left) swerve ki
k." (See Se
tion 7 for details

of the �rst three ki
ks.) In the right (left) swerve ki
k the robot ba
ks up to the right (left) side, raises its

right (left) leg and then qui
kly brings it diagonally down and towards the inside, somewhat like a karate

hop. This ki
k was one of our most powerful ki
ks early in our development pro
ess. However, after we

developed the fall forward ki
k, we experimented with using di�erent ki
ks in di�erent situations (e.g. use

the fall forward ki
k when the ball is right in front and the swerve ki
k when it is o� to the side). Eventually

we de
ided that the best approa
h was to always use the fall forward ki
k.

When the goalie tries to
lear the ball, frequently the ball stays where it is or moves a very small amount.

This
an be due to not exe
uting the ki
k perfe
tly or, more often, the fa
t that there is an opponent robot

right behind the ball, keeping it from rolling away. To make sure the ball is
leared and it is safe to go

ba
k to the waiting position inside the goalbox, the goalie
he
ked to see if the ball was right under it after

ki
king. If it saw the ball there it would try to ki
k again. This was repeated until the ball was su

essfully

leared.

Going ba
k to the goal after
learing was one of the tri
kiest parts be
ause we didn't have any lo
alization

initially. All the goalie knew was to re
ognize the ball and the goal. We didn't want the goalie to just turn

ba
k, look for the goal, walk ba
k to it and turn around to fa
e the �eld. That would mean spending a long

time without looking at the ball, whi
h might give our opponents a
han
e to s
ore sin
e the ball might not

have been
leared very far away (even though we make sure its not right under our head). The solution

to this was to walk ba
kwards after su

essfully
learing the ball and at the same time keeping looking for

the ball in
ase it appears
lose to the robot. This worked quite well and the goalie kept wat
hing the ball

when it wasn't
leared far away, but there was a new problem. When the goalie saw the ball while walking

ba
kwards, it would return to tra
king and go out to
lear the ball if it got
lose enough. After going out to

lear and walking ba
k a few times, the error in position would get large and the goalie would start drifting

away from its home position. To
ounter this, we
hanged the behavior so the goalie would turn around and

go ba
k to its home position after walking out for a long time (\a long time" being
hosen arbitrarily based

on experiments on the �eld).

There are many ways in whi
h the
apabilities of the goalie
an be improved. Adding lo
alization was

done after the Ameri
an Open, and is des
ribed in the next subse
tion. Getting better ball tra
king ability

with faster rea
tion to fast-moving balls (su
h as shots) is de�nitely needed and would improve goalkeeping

behavior substantially.

12.2.2 In
orporating Lo
alization

On
e our goalie had the ability to determine its position on the �eld, our primary strategy shifted to staying

between the ball and the goal. Given the size of the goalie with respe
t to the goal, we adopted a fairly

onservative strategy that kept the goalie in the goal most of the time.

Whenever the goalie saw the ball, it oriented itself su
h that it was pointed at the ball and situated

between the ball and the goal. If the ball
ame within a
ertain distan
e of the goal, the goalie advan
ed

54

towards the ball and attempted to
lear it. After attempting to
lear the ball, the goalie retreated ba
k into

the goal, walking ba
kwards and looking for the ball. Any time the goalie saw the ball in a non-threatening

position, it oriented itself towards the ball and
ontinued its
urrent
ourse of a
tion.

Whenever the ball was in view, the goalie kept a history of ball positions and time estimates. This

history allowed the goalie to approximate the velo
ity of the ball, whi
h was useful in de
iding when the

goalie should \stret
h out" to blo
k a shot on the goal.

One interesting dilemma we en
ountered
on
erned the tradeo� between looking at the ball and looking

around for landmarks. It seemed very possible that, given the goalie's size, if it
ould just stay between the

ball and the goal it
ould to a fairly good job of preventing goals. However, this strategy depended on the

goalie both being able to keep tra
k of it's own position and the ball's position. When we programmed the

goalie to �xate on the ball, it was not able to see enough landmarks to maintain an a

urate estimate of

its own position. On the other hand, when the goalie fo
ussed on the bea
ons in order to stay lo
alized, it

would often miss seeing the approa
hing ball. It proved to be very diÆ
ult to strike a balan
e between these

two opposing for
es.

13 Coordination

In this se
tion we des
ribe our initial and eventual solutions to
oordinating multiple so

er-playing robots.

13.1 Dibs

Our �rst e�orts to make the players
ooperate resulted dire
tly from our attempts to play games with 8

players. Every game would wind up with six robots
rowded around the ball, wrestling for
ontrol. At this

point, we only had 2 weeks before our �rst
ompetition, and thus needed a solution that did not depend on

lo
alization, whi
h was not yet fun
tional. Our solution was a pro
ess we
alled Dibs.

13.1.1 Relevant Data

In developing Dibs, we tried to fo
us on determining both what data were available to us, and of that data,

whi
h were relevant. Be
ause we did not have a
oherent set of global maps at this point, any information

from other robots would have to
ome dire
tly into the Dibs system. As we
reated the system, it be
ame

more and more
lear that the only thing we
ared about was how far from the ball ea
h robot was. Our �rst

attempt simply transmitted the ball distan
e to every other robot. Ea
h robot would then only go to the

ball if its distan
e estimate was lower than that of every other robot.

13.1.2 Thrashing

Unfortunately, this �rst attempt did not work so well. First of all, the robots' per
eption of their distan
e to

the ball was very heavily dependent on how mu
h of the ball they
ould see, how the lights were re
e
ting

o� the surfa
e of the ball, and how mu
h of the ball was a
tually
lassi�ed as \orange." This means that

estimates of the ball's distan
e varied wildly from brain
y
le to brain
y
le, often by orders of magnitude in

ea
h dire
tion. Se
ondly, even when estimates were fairly stable, a robot
ould think that it was the
losest

to the ball, start to step, and in the pro
ess move slightly ba
kward, whi
h would signal another robot to

go for the ball. The other robot would begin to step, moving slightly ba
kward at �rst, and the
y
le would

ontinue ad in�nitum.

13.1.3 Stabilization

To
orre
t these problems, we de
ided that re-evaluating whi
h robot should go to the ball in ea
h brain
y
le

was too mu
h. Evaluating that frequently didn't give a robot the
han
e to a
tually step forward (this was

before our walk was fully developed as well), so that its estimate of ball distan
e
ould de
rease. However,

we
ouldn't just take measurements every n brain
y
les and throw away all the other information | we

55

were strapped for information as it was, and we didn't want one noisy measurement to negatively a�e
t the

next n brain
y
les of play. Our solution was to take an average of the measurements over a period of time,

and instead only transmit them every n brain
y
les.

13.1.4 Taking the Average

Be
ause the vision is somewhat noisy (i.e. the robot sometimes sees the ball when it is not there, and

sometimes doesn't see it when it is there), it didn't make sense just to take the raw mean of the estimates

over the period of n brain
y
les. We de
ided that unless the robot saw the ball for at least

n

2

y
les in ea
h

period, it would report an essentially in�nite distan
e to the ball. If it did see the ball enough, it would

take all the non-in�nite estimates in that \transmit
y
le", dis
ard some �xed number of highest and lowest

values (an attempt to
lean up some of the noise), and then transmit the mean of the remaining values.

13.1.5 Aging

To prevent deadlo
k we introdu
ed an aging system into Dibs. Originally, if a robot had transmitted a very

low estimate of distan
e to the ball, and then
rashed or was removed from play, any other robots would just

remain wat
hing the ball, be
ause they would still have the other robot's estimate in their memory. Thus,

at the end of ea
h transmit
y
le, we in
remented the age of ea
h other robot's estimate. When the age

rea
hed a pre-determined
uto� (10 in our
ase), the estimate was dis
arded and set to the maximum value.

In this way, other robots
ould then resume atta
king the ball.

13.1.6 Calling the Ball

Another problem we ran into involved the \strafe" state. On
e a robot had established \Dibs" on the ball,

it would walk towards the ball while the other robots wat
hed the ball
losely. When the robot rea
hed the

ball, however, it would look up, in order to �nd the goal. While it was looking up, its ball estimates would

all go to the maximum value, and other robots would resume atta
king the ball. More often than not, this

would result in a robot stra�ng to �nd the goal, while another robot of ours would
ome up and take the

ball right out from under the nose of the �rst. Next, the se
ond robot would start to strafe, and a large

tangle of robots would result. To prevent this, we added fun
tions
alled \
allBall" and \relinquishBall."

These fun
tions merely set
ags that made the robot start lying about its distan
e to the ball and stop lying,

respe
tively. When lying about its distan
e to the ball, the robot would always report zero as its distan
e

estimate. This way, whenever the robot entered the stra�ng state, it
ould e�e
tively let the other robots

know that even though it wasn't seeing the ball, they shouldn't go after it. The robot would then relinquish

the ball at the beginning of most states, in
luding when it had lost the ball and when it had just �nished

ki
king the ball.

13.1.7 Support Distan
e

The system des
ribed so far worked pretty well in that it prevented more than one robot from going to the

ball at on
e. However that was all it did. One robot might be going to the ball, but all the others would

just stare at the ball, regardless of how far away they were. We determined that this was
onsiderably

sub-optimal, and that even if a robot is dribbling the ball down the �eld toward the enemy goal, if it were to

lose the ball, it would be ni
e to have another robot nearby to re
over, if possible. Thus we introdu
ed the

on
ept of a \support distan
e." Originally set at half a meter, and then tuned to approximately a meter,

the support distan
e was how
lose the robot would have to be to the ball before its la
k of Dibs would

prevent it from advan
ing further. While we only enjoyed limited overall su

ess using the support distan
e

te
hnique, it was a marked improvement over ordinary Dibs.

56

13.1.8 Phasing out Dibs

On
e lo
alization was brought online, the need for multiple types of transmissions (whi
h Dibs did not

respe
t) and the desire to use lo
alization data di
tated a phasing out of Dibs. Be
ause Dibs was so
arefully

tuned to the robots' playing style,
ooperation a
tually worsened for quite a while before it improved after

phasing out Dibs. However, as with many things, it needed to get worse before it
ould get better.

13.2 Final Strategy

Here we des
ribe the
oordination strategy developed during the last week or so before RoboCup 2003. In

parti
ular, it takes advantage of both lo
alization and global maps.

13.2.1 Roles

Our strategy uses a dynami
 system of roles to
oordinate the robots. In this system, ea
h robot has one

of three roles: atta
ker, supporter, and defender. The goalie does not parti
ipate in the role system. This

se
tion gives an overview of the ideas behind the roles. The following se
tions des
ribe in more detail the

supporter's and defender's behaviors and under what
onditions the roles
hange.

The roles are dynami
ally assigned, in that at the start of ea
h Brain
y
le, a given robot reevaluates

its role based on its
urrent role, its global map information, and other strategi
 information
ommuni
ated

to it by its teammates. The default allo
ation of roles is for there to be one defender and two atta
kers.

Under
ertain
ir
umstan
es an atta
ker
an be
ome a supporter, but after some time it
hanges ba
k into

an atta
ker. It is also possible for the defender to swit
h roles with an atta
ker. There should always be

exa
tly one defender and at least one atta
ker.

The di�eren
es between the roles manifest themselves in the robots' behaviors. Here is a summary of

the di�eren
es between the behaviors e�e
ted by the di�erent roles. The atta
ker's behavior is des
ribed in

more detail in Se
tion 12.1, and the supporter and defender behaviors are des
ribed more fully below.

� An atta
ker robot fo
uses ex
lusively on goal-s
oring. That is, it tries to �nd the ball, move to it, and

ki
k it towards the goal.

� The supporter's a
tions are based on a
ouple of goals. One is to stay out of the way of the atta
ker.

This is based on the idea that one robot
an s
ore by itself more e�e
tively than two robots both trying

to s
ore at the same time. Another goal is to be well pla
ed so that if the atta
ker shoots the ball

and it ri
o
hets o� the goalie or a wall the supporter
an then be
ome the atta
ker and
ontinue the

atta
k.

� Our defender stays on the defensive half of the �eld at all times. Its job is to wait for the ball to be on

its half and then go to the ball and
lear it ba
k to the o�ensive side of the �eld.

13.2.2 Supporter Behavior

The supporter uses an omnidire
tional walk to try to simultaneously fa
e the ball and move to a supporting

post. If it sees the ball, it keeps its head pointing towards the ball and tries to point its body in the same

dire
tion as its head. If it doesn't see the ball, it tries to turn towards its global map lo
ation of the ball

and s
ans with its head to try to �nd it. It is very rare for there to be a supporter that has no idea where

the ball is (i.e. while no robot sees the ball).

The lo
ation of the supporting post is a fun
tion of the position of the ball. For this we use a team-
entri

oordinate system where the edge of the �eld in
luding the defensive goal line is the positive x-axis, the left

edge of the �eld is the positive y-axis, and the units are millimeters. If the
oordinates of the ball are (x; y),

then the supporting post, (S

x

; S

y

), is given by

S

x

=

�

1150 if x > 1450

1750 if x � 1450

(42)

57

and

S

y

= min

�

y + 4200

2

; 3800

�

: (43)

13.2.3 Defender Behavior

The role of a defender in robot so

er is not mu
h di�erent from that in real so

er | to prevent the

opponents from moving the ball anywhere near the goal it is defending and to try and ki
k the ball, when

in its own half, towards a team member in the other half. We de
ided to go for a very
onservative defender

su
h that there is always one robot in our half defending the goal. At the same time we wanted to ensure

that under
onditions where the defender is in a better position to fun
tion as the atta
ker, there is smooth

swit
hing of roles between the robots.

When a robot is assigned the defender role, its �rst a
tion is to walk within a
ertain distan
e (approx.

200mm) of a prede�ned defensive post that is roughly the
enter of the defensive half of the �eld. On
e

it gets within this distan
e of the defensive post, it either turns su
h that it fa
es the ball whi
h is within

its �eld of vision or it turns to fa
e the point where it thinks the ball is based on the result of merging the

estimates from other teammates in its global map (see Se
tion 11). If it
annot see the ball and also does not

re
eive any
ommuni
ation regarding the ball from other teammates (a rare o

urren
e), it starts sear
hing

for the ball on
e it gets to the defensive post. Even while it is walking to this post, if it sees the ball and

�nds, on the basis of its
urrent world knowledge, that it is the
losest to the ball, it starts walking to the

ball. On
e it gets to the ball it tries to ki
k the ball away from the defensive zone (the bottom three-fourths

of the half of the �eld that it is defending). For the defender, we use a
ombination of the
hin-pin
h turn

and the fall forward ki
k (see Se
tion 7), as it is the most powerful ki
k we have. While ki
king, the defender

always tries to angle the ki
k away from its own goal and towards one of the
orners of the opposition.

This strategy allows us to
lear the ball in most instan
es and even takes it a long way into the other half

thereby giving the atta
ker(s) (or atta
ker and supporter) a better
han
e of s
oring a goal. A

ording to

the rules of the
ompetition, none of the team members
an enter the penalty box around their own goal. To

a

ommodate this in the defender and in the other team members ex
luding the goalkeeper, we add a
he
k

that prevents the robot from entering the goal box and a \bu�er" region around it. If the ball is within this

region, the robot just tra
ks the ball and lets the goalkeeper take
are of
learing the ball.

13.2.4 Dynami
 Role Assignment

Our role assignment system has three main fa
ets. One is a set of general rules that serve to maintain the

status quo of there being exa
tly one defender and at least one atta
ker. Next are the rules that determine

when one of the two atta
kers be
omes a supporter and then when it swit
hes ba
k. The last set of rules

or
hestrates timely swit
hes between the defender and an atta
ker.

General Rules We label the three robots R

1

, R

2

, and R

3

. Then the following rules in
uen
e R

1

's
hoi
e

of role. (The rules are the same for ea
h robot; the labels are to distinguish whi
h robot's role is being

determined presently.)

� The default is for ea
h robot to keep its
urrent role. It will only
hange roles if a spe
i�
 rule applies.

� If R

1

�nds that it is \alone" in that it has not been re
eiving
ommuni
ation from other teammates

for some time, it automati
ally assumes the role of an atta
ker.

� In most
ases,
ommuni
ation works �ne, and if neither R

2

nor R

3

is a defender, then R

1

will auto-

mati
ally be
ome (or stay) a defender. This ensures that (under normal
onditions) there will always

be at least one defender. Ensuring that there is not more than one defender is taken
are of in the

se
tion on atta
ker and defender swit
hing.

58

� If R

1

is a supporter and so is R

2

or R

3

, then R

1

will automati
ally be
ome an atta
ker. This
ould

happen a

identally if two supporters simultaneously de
ide to be
ome supporters without enough

time in between for the se
ond one to be aware of the �rst's de
ision. In this
ase this rule ensures

that at least one of the supporters will immediately go ba
k to being an atta
ker.

Atta
kers and Supporters A number of
onsiderations in
uen
e our me
hanism for swit
hing between

atta
ker and supporter. One su
h
onsideration is that we want to prevent a robot from
hanging roles twi
e

with very little time in between. This is be
ause a robot that keeps
hanging roles very frequently behaves

in a s
attered manner and is unable to a

omplish anything. To enfor
e this, we made the roles somewhat

sti
ky. That is, for an atta
ker or supporter, there is an amount of time su
h that on
e the robot enters that

role, it is unable to leave it until that mu
h time has passed. Presently, the amount of time for an atta
ker

is 2:5 se
onds, and for a supporter it is 2 se
onds. Notably, sti
kiness
an easily be in
on
i
t with the

general rules listed above. In these
ases we give sti
kiness the highest priority. We also
onsidered giving

the general rules highest priority, and it is still not
ompletely
lear to us whi
h system is better.

An important measure that we use to evaluate a robot's utility as an atta
ker is its ki
k time. This is

an estimate of the amount of time it will take the robot in question to walk up to the ball, turn it towards

the goal, and ki
k. Ea
h robot
al
ulates its own ki
k time and
ommuni
ates it to the other robots as part

of their
ommuni
ation of strategi
 information. The estimated amount of time to get to the ball is the

estimated distan
e to the ball divided by the forward speed. The time to turn with the ball is determined by

al
ulating the angle that the ball will have to be turned and dividing by the speed of the
hin-pin
h turn.

Consider the
ase where there are two atta
kers, A

1

and A

2

. On
e A

1

's period of sti
kiness has expired,

it will be
ome a supporter pre
isely when all of the following
onditions are met:

� A

1

and A

2

both see the ball. This helps to ensure the a

ura
y of the other information being used.

� The ball is in the o�ensive half, as well as both robots A

1

and A

2

. Be
oming a supporter is only useful

when our team is on the atta
k.

� A

1

has a higher ki
k time than A

2

. That is, A

2

is better suited to atta
k, so A

1

should be
ome the

supporter.

On
e we have a supporter, S, and the role is no longer stu
k, it will turn ba
k into an atta
ker if any of

the following
onditions hold:

� S, the ball, or the atta
ker (A) go ba
k into the defensive half.

� A and S both see the ball, and S's estimate of its distan
e from the ball is smaller than A's.

� A doesn't see the ball, and S's estimate of the ball's distan
e from it is less than some
onstant

(presently 300 mm).

� S has been a supporter for longer than some
onstant amount of time (presently 12 se
onds).

Atta
ker and Defender Swit
hing The following set of rules is used to allow the defender and an

atta
ker to swit
h roles under appropriate
ir
umstan
es.

� If a defender re
eives the information that there is another defender, it
he
ks, using the global map

data on the robots' distan
es to the ball, if it is a \better" defender (the one farthest from the ball).

If so, it stays a defender. If not, it be
omes an atta
ker.

� If a defender �nds that there is no other defender, it still
he
ks to see if the
onditions are suitable for

it to be
ome an atta
ker. Here we test to see if the robot is
losest to the ball and is in the se
tion of

the �eld that is on the top half on its side of the �eld. If it is, it sends a request to the atta
ker, asking

to swit
h roles with it. Then, instead of be
oming an atta
ker immediately, it waits for the atta
ker to

59

re
eive the request. On
e this happens, we end up with more than one defender in the team (see the

rule mentioned below), and this is resolved using the
ondition mentioned above. More information on

message types and
ommuni
ation
an be found in Se
tion 9.

� When an atta
ker re
eives a request from a defender to swit
h roles, it automati
ally a

epts. It

does not need to parti
ipate in the de
ision making pro
ess be
ause the defender had a

ess to the

same information as it did (as a result of the global maps) when it de
ided to swit
h. The atta
ker

ommuni
ates its a

eptan
e by simply be
oming a defender. This is suÆ
ient be
ause the robots

always
ommuni
ate their roles to all of their teammates.

As mentioned above, our role system was developed quite hastily in the last week or so before
ompetition.

However, we feel that the system performs quite appropriately during games. The atta
ker/defender swit
hes

normally o

ur where they seem intuitively reasonable. The two atta
kers (with one be
oming a supporter

periodi
ally), trying to s
ore a goal, frequently look like a well organized pair of teammates. Nonetheless,

there are
ertainly some instan
es during the games where we
an point to situations where a role
hange

happened at an inopportune time, or where it seems like they should \know better" than to do what they

just did. Finding viable solutions to problems like this
an be strikingly diÆ
ult. We look forward to making

further progress on these problems and to improving the
ooperation between the robots.

14 UT Assist

During the
ourse of our development, we developed a valuable tool to help us debug our robot behaviors

and modules. This tool, whi
h we
alled UT Assist, allowed us to experien
e the world from the perspe
tive

of our Aibos and monitor their internal states in real-time.

14.1 General Ar
hite
ture

UT Assist
onsists of two pie
es: a
lient and a server. The fun
tion of the
lient software, whi
h is

programmed in C++ and runs on an Aibo, is to queue and send data to the server. The server, whi
h

is programmed in Java and runs on a remote
omputer, is primarily
on
erned with
olle
ting, displaying,

and saving the data that it re
eives. We
hose Java for the server be
ause it put us on a relatively qui
k

development
y
le and gave us a

ess to a ri
h library of pre-existing
ode. In parti
ular, the ease with whi
h

Java handles networking and graphi
s made it an obvious
andidate for this proje
t.

Multiple
lients
an
onne
t to one server. It is possible for more than one server to be a
tive at

on
e, provided that it does not listen on a port that is already taken by another servi
e. All
lient-server

ommuni
ation takes pla
e via TCP. The
lient software uses the default Open-R TCP endpoint interfa
e,

and the server software uses TCP networking
lasses des
ribed in the Java 2 API spe
i�
ation.

14.1.1 Typi
al Usage

During ea
h Brain
y
le on the Aibo, many di�erent pie
es of
ode
an attempt to send data messages to

the server. If the
lient is not already sending data to the server, it will a

ept ea
h request and pla
e the

spe
i�ed data into a queue. If the
lient is busy sending data, it will reje
t the request to send data. At

the end of ea
h Brain
y
le, if the
lient has some data in its queue, it will divide the data into �xed-length

pa
kets and start sending the data to the server. This method of pro
essing data ensures that only data

from the most re
ent Brain
y
le will be sent to the server and avoids a \ba
klog" situation, in whi
h the

speed at whi
h data is queued ex
eeds the speed at whi
h it
an be delivered to the server.

Ea
h message that enters the queue in the
lient is uniquely identi�ed by a one-byte ID �eld. From the

perspe
tive of the
lient, ea
h message it re
eives is simply a group of bytes asso
iated with a unique ID.

None of the pa
ket pro
essing that the
lient performs upon the queue of messages depends on the a
tual

data in the messages, whi
h allows users to add new types of data messages without modifying the
lient.

60

(a) (b) (
) (d)

Figure 15: Several examples of visual data displayed in UT Assist. Part (a)
ontains a low-resolution

image with vision obje
ts overlayed on top. Part (b) shows a
olor segmented image. Part (
)
ontains a

low-resolution image, and (d)
ontains a high-resolution image.

When the data from the
lient rea
hes the server, it is reassembled into a queue of messages. Ea
h

message is then passed to the appropriate handler for that type of message. These di�erent message types

are dis
ussed in the following se
tion.

14.2 Debugging Data

One use of UT Assist is to extra
t debugging data from the Aibos. The following se
tions des
ribe the

di�erent types of data that
an be viewed.

14.2.1 Visual Output

There are several di�erent types of visual data that UT Assist
an display, ea
h of whi
h allows the user to

examine a di�erent aspe
t of the Aibo's vision system. The di�erent types of data are des
ribed as follows

(see Figure 15 for examples):

� Low and high resolution images { UT Assist
an transfer full resolution images from the Aibo's
amera

(76,032 bytes in size) as well as smaller versions of the same image (4,752 bytes) whi
h la
k the
larity

of the high-resolution images but
an be sent at a mu
h faster rate. The small images
an typi
ally be

transmitted and displayed in fra
13 of a se
ond, whereas the large images take 3 to 4 se
onds to be

displayed.

� Color segmented images { The Aibo
an send
olor segmented images to UT Assist. The
olor seg-

mented images are the high-resolution images where ea
h pixel has been
lassi�ed by the Aibo's low-

level vision as one of several dis
rete
olors (for more details, see Se
tion 4.2).

� Vision obje
ts { UT Assist
an also display bounding boxes around obje
ts that the Aibo's high-level

vision software has re
ognized. UT Assist
an overlay these bounding boxes on top of regular
amera

images, a te
hnique that is useful for identifying possible bugs in the vision system.

14.2.2 Lo
alization Output

UT Assist
an also parse several types of debugging output whi
h allow the user to examine aspe
ts of the

Aibo's internal model of the world. These data
an be des
ribed as follows (see Figure 16 for an example):

� Parti
le �ltering { UT Assist
an display the distribution of position/orientation parti
les that the

Aibos use to determine their position (for more on parti
les, see Se
tion 8.1).

61

Figure 16: An overhead view of the �eld, as displayed on UT Assist. The Aibo's position and orientation

are denoted by the small blue triangle. The white dots on the �eld represent the parti
le distribution that

the Aibo uses to determine it's position and orientation. Also shown are an estimate of error in the position

(the blue oval), data from the IR sensor (the red line), and an estimate of the ball's position (the orange

ir
le).

� Visible bea
ons { The Aibo
an also send data about whi
h bea
ons it
urrently sees, whi
h
an be

displayed on the overhead map so that the user
an qui
kly determine whi
h bea
ons the Aibo
an

and
annot see.

� Position information { UT Assist
an also display an Aibo's �nal estimate of position and orientation

and the un
ertainty asso
iated with that estimate.

� Other obje
ts { UT Assist
an display an Aibo's estimate of where the ball
urrently is, as well as the

lo
ation of any opponents that it sees.

14.2.3 Mis
ellaneous Output

� Infrared data { A small bar
an be displayed in front of the Aibo's nose that indi
ates the
urrent

value of the infrared sensor.

� Text des
riptions of state { Textual des
riptions of the Aibo's
urrent state and role
an also be

displayed (for more on roles, see Se
tion 13.2.1).

14.3 Vision Calibration

One of the
hief bene�ts of UT Assist is the relatively seamless manner in whi
h it
an be used to
alibrate

the low-level vision of the Aibos. This pro
ess
an be des
ribed in the following manner: (see Figure 17 for

examples)

1. The user requests an image from an Aibo. The server sends this request to the
lient on the spe
i�ed

Aibo.

62

(a) (b)

(
) (d)

Figure 17: Color
alibration for the Aibo using UT Assist. Part (a) shows the initial image as viewed in the

UT Assist Image Segmenter. In (b), the user has started to
lassify (label) image pixels by painting various

olors on them. Part (
) depi
ts the image after it has been
lassi�ed, and (d) shows the distribution of

olors in the 3-dimensional YCbCr spa
e, i.e. the �nal Master Cube.

63

2. The vision module in the Brain of that Aibo responds by sending with a high-resolution image ba
k

over the network to the server.

3. The image is displayed on the user's s
reen, and the user is allowed to \paint" various
olors on the

image (i.e. label the pixels on the image). The
olors and the underlying pixels of the image are paired

and saved so that they
an later be used to
ompute the Intermediate (IM)
ubes for the Aibo.

4. The user repeats this pro
ess, from step one, until she/he is satis�ed with the resulting
olor
alibration.

Then the Master (M)
ube is generated, loaded on the memory sti
k, and used by the Aibo for

subsequent image
lassi�
ation.

While painting the images, the user
an view what the image would look like had it been pro
essed

with the
urrent
olor
ube (NNr
ube) using the Nearest Neighbor (NNr) rule. The user
an also preview

false-3D graphs of the YCbCr
olor spa
e for ea
h
olor. These represent the IM
olor
ubes. The user
an

also see the M
ube, generated by applying a NNr s
heme on the NNr
ube obtained by merging the IM

ubes. For more details on
olor segmentation, see Se
tion 4.2.

15 The Competitions

In the RoboCup initiative, periodi

ompetitions
reate �xed deadlines that serve as important motivators.

Our initial goal was to have a team ready to enter in the First Ameri
an Open Competition. We then

pro
eeded to qualify for and enter the Seventh International RoboCup Competition. This se
tion des
ribes

our results and experien
es at those events.

15.1 Ameri
an Open

The First Ameri
an Open RoboCup Competition was held in Pittsburgh, PA from April 30th to May 4th,

2003. Eight teams
ompeted in the four-legged league, four of whi
h, in
luding us, were teams
ompeting

in a four-legged league RoboCup event for the �rst time. The eight teams were divided into two groups of

four for a round robin
ompetition to determine the top two teams whi
h would advan
e to the semi-�nals.

The teams in our group were from the University of Pennsylvania, Georgia Institute of Te
hnology (two

veteran teams), and Te
 de Monterrey, Mexi
o (another new team). At this
ompetition, we used our initial

behaviors for both the goal s
oring player (see Se
tion 12.1.1) and the goalie (see Se
tion 12.2.1). The results

of our three games are shown in Table 14.

Opponent S
ore (us-them) Notes

Monterrey 1{1 Lost the penalty shootout 1{2

Penn 0{6

Georgia Te
h 0{2

Table 14: The s
ores of our 3 games at the Ameri
an Open.

On the day before the
ompetition, we arranged for a pra
ti
e game against the Metrobots, a new team

from three s
hools in the New York Metropolitan area: Columbia, Rutgers, and Brooklyn College. The

game was meant as an initial test of our behaviors. In parti
ular, we used SplineWalk in the �rst half and

ParamWalk in the se
ond half. After going down 3{0 in the �rst half, the game ended 4{1 in favor of the

Metrobots.

Playing in this pra
ti
e game was very valuable to us. Immediately afterwards, we drew up the following

priority list:

1. Don't see the ball o� the �eld. There was a parquet
oor and wooden doors in the room. The robot

appeared to often see them as orange and try to walk o� the �eld.

64

2. Get lo
alization into the goalie. At the time, we were using the initial goalie solution, and the goalie

often found itself stu
k in the
orner.

3. Start with a set play. When we had the ki
ko�, the other team often got to the ball before we were ready

to ki
k it. We de
ided to try re
exively ki
king the ball and having another robot walk immediately

to the target of the ki
k.

4. Get a sideways head ki
k in. Whereas our initial goal s
oring behavior strafed around the ball to look

for the goal, the other team's robots often walked to the ball and immediately
i
ked it with their

heads. That provided them with a big advantage.

5. Move faster. Most other teams in the tournament used CMU's walk from their 2002
ode. Those

teams moved almost twi
e as fast as ours.

6. Ki
k more reliably and qui
kly. It was often
lear that our robots were making good de
isions. However,

their attempted ki
ks tended to fail or take too long to set up.

Some of these priorities | parti
ularly the last two | were
learly too long term to implement in time for

the
ompetition. But they were important lessons.

Overnight, we added some preliminary lo
alization
apabilities to the goalie so that it
ould get ba
k into

the goal more qui
kly. We also developed an initial set play and made some progress toward ki
king more

qui
kly when the ball was near the goal (though not on the rest of the �eld) by just walking forward when

seeing the orange ball dire
tly in front of the goal.

Our set play for use on o�ensive ki
ko�s involved two robots. The �rst one, pla
ed dire
tly in front of the

ball, simply moved straight to the ball and ki
ked it dire
tly forward | without taking any time to lo
alize

�rst. We tended to pla
e the robot su
h that it would ki
k the ball towards an o�ensive
orner of the �eld.

The se
ond robot, whi
h was pla
ed near the
orresponding
enter bea
on, re
exively walked forwards until

either seeing the ball or timing out after moving for about half a meter.

On defensive ki
ko�s, our set play was simply to instru
t one of the robots to walk forwards as qui
kly

as possible. We pla
ed that robot so that it was fa
ing the ball initially.

In the �rst game, we tied Te
 do Monterrey 1{1 in a largely uneventful game. In the penalty shootout,

we lost 2{1. Though we only attained limited su

ess, given the time we had to develop our team, we were

quite happy to s
ore a goal and earn a point in the
ompetition (1 point for a shootout loss).

After some network problems for both teams, the 2nd game against Penn ended up as a 6{0 loss. Penn,

the eventual runner up at RoboCup 2003, had a very unique and powerful ki
k in whi
h the robot turns

while its arm is stu
k out. Despite the lopsided s
ore, we did observe some positive things. The goalie made

some good plays and su

essfully lo
alized on the
y a
ouple of times. Our new set play worked a little bit,

too.

Our last game was against Georgia Te
h, the eventual runner up of the
ompetition, and we only lost

2{0. The goalie looked good again | it was
ertainly the player with the most a
tion overall.

One of the biggest take-home lessons from this
ompetition was that although our robots appeared to

make intelligent de
isions, they had no hope in the
ompetition unless they
ould walk and ki
k as qui
kly as

the other robots. We brie
y
onsidered moving to the CMU 2002 walking and ki
king
ode as we pro
eeded

with our development toward RoboCup 2003. However, in the end we de
ided to sti
k with our de
ision to

reate our entire
ode base from s
rat
h.

Over the next two months we
ontinued developing the
ode outside of the
lass
ontext. Many of the

routines des
ribed in this te
hni
al report were developed over the
ourse of those two months. In parti
ular,

we did su

eed in
reating a faster walk (Se
tion 5), we got lo
alization working (Se
tion 8), we developed

many more ki
ks (Se
tion 7), and we
ompletely reworked the strategy (Se
tion 12), all as des
ribed herein.

During this time we played frequent pra
ti
e games with two full teams of robots, whi
h helped us immensely

with regards to ben
hmarking our progress and exploring the spa
e of possible strategies.

By the end of June, we were mu
h more prepared for RoboCup 2003 than we had been for the Ameri
an

Open. Of
ourse we expe
ted the
ompetition to be tougher as well.

65

15.2 RoboCup 2003

The Seventh International RoboCup Competition was held in Padova, Italy from July 2nd to 9th, 2003.

24 teams
ompeted in the four-legged league, eight of whi
h, in
luding us, were teams
ompeting at the

international event for the �rst time. The 24 teams were divided into four groups of six for a round robin

ompetition to determine the top two teams whi
h would advan
e to the quarter-�nals. The teams in

our group were the German Team from University of Bremen, TU Darmstadt, Humboldt University, and

University of Dortmund, all in Germany; ASURA from Kyushu Institute of Te
hnology and Fukuoka Institute

of Te
hnology in Japan; UPennalizers from the University of Pennsylvania; Essex Rovers from the University

of Essex in the UK; and UTS Unleashed! from the University of Te
hnology at Sydney. Essex ended up

being unable to
ompete and dropped out of the
ompetition. The results of our four games are shown in

Table 15.

Opponent S
ore (us-them)

UTS Unleashed! 1{7

German Team 0{9

UPennalizers 0-6

ASURA 1-4

Table 15: The s
ores of our four oÆ
ial games at RoboCup.

Like at the Ameri
an Open, we made sure to arrange some pra
ti
e games in Italy. The results are

shown in Table 16. Our �rst test mat
h was against CMU, the defending
hampions. We ended up with an

en
ouraging 2{2 tie, but it was only their �rst test mat
h as well, with some things still
learly not working

orre
tly yet. Overall, we were fairly satis�ed with our performan
e.

Opponent S
ore (us-them)

CMU 2{2

U. Washington 0{1

Team Sweden 3{0

U. Washington 0{4

Metrobots 3{1

Team Upsalla 4{0

Table 16: The s
ores of our six unoÆ
ial games at RoboCup.

In our �rst \oÆ
ial" pra
ti
e mat
h (organized by the league
hairs), we played against the University

of Washington team (3rd pla
e at the Ameri
an open) and lost 1{0. It was a fairly even game. They s
ored

with 10 se
onds left in the half (the game was just one half). They also had one other
lear
han
e that they

ki
ked the wrong way. In this game, it be
ame apparent that we had introdu
ed some bugs while tuning

the
ode sin
e the day before. For example, the fall dete
tion was no longer working. We also noti
ed that

our goalie often turned around to fa
e its own goal in order to position itself. It was in that position when

it was s
ored on. The other noti
eable problem was that our robots had a blind spot when looking for the

ball: there were times when we should have gotten possession of the ball but did not see it.

Nonetheless, we remained happy with our performan
e. The role swit
hing was working well, and our

robots were as fast to the ball in general as any other team's. We had the ball down in UW's end of the

�eld frequently. We just
ouldn't get any good shots o�.

We won our 2nd and last \oÆ
ial" pra
ti
e game against team Sweden 3-0. They had some problems

with their goalie, so our �rst two goals were essentially on an empty net. We were hoping to test some

hanges to the goalie in this game, but the ball was in their end most of the time, so our goalie didn't get

tested mu
h.

66

Next, we played another informal pra
ti
e mat
h against the University of Washington team and lost

4{0. This game appeared to be mu
h worse for us than the previous one against them, so we de
ided to

undo some of the
hanges we had made on site. Although it is always tempting to keep trying to improve

the team at the last minute, it is also risky. This is an important lesson about
ompetitions that has been

learned many times and is still often ignored!

In our �rst oÆ
ial game, we played the other new team in our group, UTS Unleashed! and lost 7{1. Our

impression was that the s
ore was not re
e
tive of the overall play: there wasn't anything noti
eably wrong

with our
ode. UTS Unleashed! was just mu
h more eÆ
ient at
onverting their
han
es. Playing in this

game exposed our goalie's weakness with regards to being unable to both remain lo
alized and see the ball

at the same time.

Next, we played the top-seeded team in our group, the German team, and lost 9{0. Again, our opponent

did not appear so mu
h better than us, but the small things made a big di�eren
e in terms of goals. Our

general feeling was one of pride at having
aught up with the other teams in terms of many of the low-level

skills su
h as fast walking, ki
king, lo
alization, et
. But we just didn't have the time to meld those into

quite as tuned a so

er strategy as those of the other teams. One highlight of this game was a wonderful

save by our goalie in whi
h it swatted the ball away with a dive at the last se
ond and then followed the ball

out to
lear it away.

In our next game, we played the eventual tournament runner up, UPennalizers, and lost 6{0.

In pla
e of our
an
eled game against Essex, we de
ided to have a remat
h from the Ameri
an Open

against the Metrobots. This time we met with a mu
h di�erent result, winning 3{1.

We played our last oÆ
ial game against Asura, the winner of the Japan Open. It was 1{1 at halftime,

but we ended up losing 4{1. Still, we
ontinued to be happy with the way the team looked in general. The

ball was in our o�ensive end of the �eld a fair amount. We were just less able to s
ore when we had
han
es,

and our goalie
ontinued to be a weak link on defense.

Finally, we played one last pra
ti
e mat
h against Team Upsalla from Sweden and won 4{0.

Based on all of our pra
ti
e mat
hes, we seemed to be one of the better new teams at the
ompetition.

We were in a parti
ularly hard group, but we were able to
ompete at a reasonable level with even the best

teams (despite the lopsided s
ores).

15.3 The Challenge Events

In addition to the a
tual games, there was a parallel \
hallenge event"
ompetition in whi
h teams pro-

grammed robots to do three spe
ial-purpose tasks:

1. Lo
ating and shooting a bla
k and white (instead of an orange) ball;

2. Lo
alizing without the aid of the standard 6
olored �eld markers; and

3. Navigating from one end of the �eld to the other as qui
kly as possible without running into any

obsta
les.

Given how mu
h e�ort we needed to put in just to
reate an operational team in time for the
ompetition,

we did not fo
us very mu
h attention on the
hallenges until we arrived in Italy. Nonetheless, we were able

to do quite well, whi
h we take as a testament to the strengths of our overall team design.

On the �rst
hallenge, we �nished in the middle of the pa
k. Our robot did not su

eed at getting all

the way to the bla
k and white ball (only eight teams su

eeded at that), but of all the teams that did not

get to the ball, our robot was one of the
losest to it, whi
h was the tie-breaking s
oring
riterion. Our rank

in this event was 12th.

In this
hallenge event, we used our normal vision system with a
hange in high-level vision for ball

dete
tion (see Se
tion 4.4 for details on obje
tion re
ognition). The bla
k and white ball appears almost

fully white from a distan
e, i.e. in
ases where we
an see the entire ball, and the algorithm �rst sear
hed

for su
h blobs whose bounding boxes had the required aspe
t ratio (1:1). In other
ases in whi
h the ball

is partially o

luded, the ball was visualized as being made up of bla
k and white blobs, and the idea

67

was to group similar sized blobs that were signi�
antly
lose to ea
h other (a threshold determined by

experimentation). This required us to also train on the bla
k and white ball when building up the
olor
ube

(see Se
tion 4.2 for details on
olor segmentation). This approa
h worked well in our lab, but on the day of

the
hallenge we did not have the properly trained
olor
ube on the robot, whi
h resulted in the robot not

being able to see the ball well enough to go to it.

In the lo
alization
hallenge, the robot was given �ve previously unknown points on the �eld and had to

navigate pre
isely to them without the help of the bea
ons. Our robot used the goals to lo
alize initially,

and then relied largely on odometry to �nd the points. Our robot su

essfully navigated to only one of the

�ve points, but the large majority of teams failed to do even that. Our s
ore was suÆ
ient to rank us 5th

pla
e on this event. Unfortunately we were disquali�ed on a te
hni
ality. We had initially programmed the

robot with the wrong
oordinate system (a mere sign
hange). Rather than running the robot toward mirror

images of the a
tual target points, we de
ided to �x the
ode and a

ept the disquali�
ation.

Finally, on
hallenge 3, the robot was to move from one side of the �eld to the other as qui
kly as possible

without tou
hing any of seven stationary robots pla
ed in previously unknown positions. Our robot used

an attra
tion and repulsion approa
h whi
h pulled it toward the target lo
ation but repelled it from any

observed obsta
le. The resulting ve
tor for
es were added to determine the instantaneous dire
tion of motion

for the robot. Sin
e speed was of the essen
e, our robot would swit
h to our fastest gait (ParamWalk) when

no obsta
les were in sight. A slower gait that allowed omnidire
tional movement (SplineWalk) was used for

all other movement.

Our robot was one of only four to make it all the way a
ross the �eld without tou
hing an obsta
le, and

it did so in only 63.38 se
onds. The German team su

eeded in just 35.76 se
onds, but the next
losest

ompetitor, ARAIBO, took 104.45 se
onds. Thus we ranked 2nd in this event.

OÆ
ially, we �nished 13th in the
hallenge events. However the unoÆ
ial results, whi
h did not take into

a

ount our disquali�
ation in event 2, nor one for the University of Washington, pla
ed UT Austin Villa

in fourth pla
e. Given that 16 of the 24 RoboCup teams were returning after having
ompeted before, and

several of them had spent more e�ort preparing for the
hallenges than we had, we were quite proud of this

result and are en
ouraged by what it indi
ates about the general robustness of our
ode base.

16 Con
lusions and Future Work

The experien
es and algorithms reported in this te
hni
al report
omprise the birth of the UT Austin Villa

legged-league robot team. Thanks to a fo
ussed e�ort over the
ourse of 5 1/2 months, we were able to

reate an entirely new
ode base for the Aibos from s
rat
h and develop it to the point of
ompeting in

RoboCup 2003.

There are still many dire
tions for future improvements to our team, as noted throughout this report.

We plan to
ontinue our development toward future RoboCup
ompetitions. But more importantly, we now

have a fully fun
tional resear
h platform and are ready to use it for investigations in various dire
tions. One

urrent e�ort involves automati
ally learning to improve the walking parameters; other investigations are

likely to begin shortly.

Overall, developing a
ompetitive RoboCup so

er team in su
h a short period of time has been a

rewarding learning experien
e. We look forward to building from it in the future and
ontinuing to
ontribute

to the RoboCup initiative.

A
knowledgments

Thanks to other members of the original
lass from the spring of 2003, all of whom
ontributed to the design

pro
ess of our team. Parti
ular thanks to Nabeel Ahmed, Pradeep Desai, Gregory Jay, Chris Lundberg, and

Aniket Murarka. The authors would also like to thank Sony for developing the robots and sponsoring the

four-legged league, as well as the previous RoboCup legged-league teams for forging the way and providing

68

their sour
e
ode and te
hni
al reports as do
umentation. This resear
h is supported in part by NSF

CAREER award IIS-0237699.

A Heuristi
s for the Vision Module

In this appendix, we detail the heuristi
s used in the vision module that are alluded to in the main text of

Se
tion 4.

A.1 Region Merging and Pruning Parameters

After the initial
olor segmentation and run-length en
oding, we attempt to merge the regions that
orrespond

to the same obje
t. This operation is really su

essful only if the asso
iated
olor segmentation is good. But

even then,
hoosing the heuristi
s used in the region merging pro
ess does a�e
t the performan
e of the

vision system as a whole. To a large extent the thresholds were
hosen based on detailed experimentation

with di�erent numeri
al values.

� The �rst threshold to be de
ided is the extent to whi
h two runlengths need to overlap (i.e. the number

of pair of pixels, one from ea
h runlength, that have the same horizontal
oordinate) before we de
ide to

merge them. We did try with several values
orresponding to varying degrees of overlap. For example if

we set this number to be 1 we are asking for very little overlap between two runlengths (one below the

other) while a number su
h as 10 would mean that a signi�
ant degree of overlap is expe
ted between

runlengths
orresponding to the same obje
t. We found that with our
olor segmentation, whi
h does

perform proper segmentation in most
ases on
e it has been trained, we did not gain mu
h in terms of

a

ura
y by setting a high threshold. By setting a low threshold, on the other hand, we found that we

rarely failed to merge regions
orresponding to the same obje
t. So, even though the low threshold did

ause the generation of erroneous bounding boxes in some
ases where the
olor segmentation did not

do that well, we de
ided to go for a low threshold of overlap. We only look for a overlap of 1� 2 pixels

and use additional
onstraints (some of them are explained below) to remove the spurious blobs.

� On
e the initial set of bounding boxes have been generated we need to do some pruning to remove

spurious blobs, parti
ularly those
aused due to the lowmerging threshold explained above. We realized

that the numerous small blobs that were
reated need to be removed from
onsideration. We set a

ouple of thresholds here: the bounding box has to be at least 4 pixels wide along both the x and

the y axes, and ea
h box needs to have at least 15 pixels to be
onsidered any further. This works

�ne for the ball while for other
olors we seem to need a lower (se
ond) threshold to a
tually obtain

the required performan
e (we redu
e it to 9-10 pixels instead of the 15). This removes a lot of noisy

estimates and those that survive are further pruned depending on the obje
t being sear
hed for (see

subsequent appendi
es).

� Another heuristi
 that we in
lude to remove spurious bounding boxes from further
onsideration is the

density of the bounding boxes. The density of a bounding box is de�ned as:

Density

Bbox

=

�

no: of pixels of the
olor under
onsideration in Bbox

(Bbox:lrx �Bbox:ulx) � (Bbox:lry �Bbox:uly)

�

(44)

We determined experimentally that a minimum density requirement of � 0:4 ensures that we remove

most of the spurious bounding boxes generated due to boundary e�e
t, lighting variations et
 and at

the same time the really signi�
ant blobs are retained for further
onsideration.

69

A.2 Tilt Angle Test

The tilt angle test is one of the most widely used heuristi
s to remove spurious blobs that are generated due

to shadowing and re
e
tan
e problems. These are generally the blobs that appear to be
oating in the sky

or are on the �eld and hen
e
annot represent obje
ts of interest. The motivation for this approa
h is the

fa
t that the obje
ts of interest rarely appear above the horizon in the image (they do not appear in the

�eld or on the opponents either). This test is mainly used only in the
ase where the robot's head is tilted

down by an angle less than 25

Æ

be
ause with the head tilted mu
h lower, the obje
ts may appear above the

horizon too.

In this method, we use the known
amera rotation parameters and the bounding boxes obtained in

the image under
onsideration to obtain the
ompensated tilt angle at whi
h the obje
t would have been

observed, with respe
t to the robot's
amera frame of referen
e, if the robot's head had been at its referen
e

(base) position (i.e. zero tilt, pan and roll).

Compensated

tilt

(radians) = ar
tan

�

ImgCenter

y

�BboxCentroid

y

Fo
alP ixConstant

�

+RoboCamTilt (45)

where

1. ImgCenter

y

: This is the
enter of the image plane along the y-axis (x varies from 0 � 175 while y

varies from 0� 143) given by b

143

2

 = 71.

2. BboxCentroid

y

: This is the y
oordinate of the
entroid of the bounding box under
onsideration, in

the image plane.

3. Fo
alP ixConstant: This is a
onstant of the robot's
amera system, given by ImageResolution �

CameraFo
alLength = 72 � 2:18.

4. RoboCamTilt: This is the basi

amera tilt of the robot when the image is observed.

This Compensated

tilt

an then be used in
onjun
tion with experimentally determined thresholds to

remove the spurious blobs from further
onsideration in the obje
t dete
tion phase. For example, in the
ase

of the ball, we
ould easily set a threshold and say that the Compensated tilt should not be greater than 1

Æ

for all valid balls. See subsequent appendi
es for details on individual thresholds for various obje
ts on the

�eld.

A.3 Cir
le Method

The orange ball is probably the most important obje
t that needs to be dete
ted on the �eld. We need

a good estimate of the ball bounding box as it determines its size and hen
e its distan
e from the robot.

This information is very important for planning the game strategy. But in most
ases the ball is partially

o

luded by the other robots and the obje
ts on the �eld or by the fa
t that only part of the ball is within

the robot's visual �eld.

On
e the ball bounding box has been determined, we �nd three points on the
ir
umferen
e of the ball

by s
anning along three lines, one ea
h along the top, bottom and
enter line of the bounding box. Ea
h of

these points is found by sear
hing for the orange-to-any-
olor and any-
olor-to-orange transition. Of
ourse,

we do run into problems when the basi

olor segmentation of the ball is not perfe
t and we �nd
olors su
h

as yellow and red on se
tions of the ball. But in most
ases this method gives a good estimate of the ball

size and hen
e distan
e (an error of �10
m in distan
e).

Given the three points, we
an determine the equation of the
ir
le that passes through these points and

hen
e obtain the
enter and radius of the
ir
le that des
ribes the ball and provides an estimate of the ball

size even for partially o

luded balls. Consider the
ase where we �nd three points in the image plane, say

P

1

= (x

1

; y

1

); P

2

= (x

2

; y

2

) and P

3

= (x

3

; y

3

) (See Figure 18). Sin
e all these points lie on the
ir
le that

70

des
ribes the ball, we
an then write:

(x� x

1

)

2

+ (y � y

1

)

2

= 0

(x� x

2

)

2

+ (y � y

2

)

2

= 0

(x� x

3

)

2

+ (y � y

3

)

2

= 0

P1

P2

P3

r

b

(x,y) center

L2

L1

a

P1 = (x1, y1)

P2 = (x2, y2)

P3 = (x3, y3)

Cir
le Method

Figure 18: Given three point P

1

; P

2

; P

3

we need to �nd the equation of the
ir
le passing through them.

Through the pair of points P

1

; P

2

and P

2

; P

3

we
an form two lines L

1

; L

2

. The equations of the two

lines are:

y

L

1

= m

L

1

� (x � x

1

) + y

1

(46)

y

L

2

= m

L

2

� (x � x

2

) + y

2

(47)

where

m

L

1

=

�

y

2

� y

1

x

2

� x

1

�

;m

L

2

=

�

y

3

� y

2

x

3

� x

2

�

(48)

The
enter of the
ir
le is the point of interse
tion of the perpendi
ulars to lines L

1

; L

2

, passing through

the mid points of segments P

1

� P

2

; (a) andP

2

� P

3

; (b). The equations of the perpendi
ulars are obtained

as:

y

0

�a

=

�

�1

m

L

1

�

�

�

x�

x

1

+ x

2

2

�

+

y

1

+ y

2

2

(49)

y

0

�b

=

�

�1

m

L

2

�

�

�

x�

x

2

+ x

3

2

�

+

y

2

+ y

3

2

(50)

Solving for x gives:

x =

m

L

1

�m

L

2

� (y

1

� y

3

) + (m

L

2

�m

L

1

) � x

2

+ (m

L

2

� x

1

�m

L

1

� x

3

)

2 � (m

L

2

�m

L

1

)

(51)

71

y =

(x

1

� x

3

) + (m

L

1

�m

L

2

) � y

2

+ (m

L

2

� y

1

�m

L

1

� y

3

)

2 � (m

L

2

�m

L

1

)

(52)

This gives the radius of the
ir
le as:

r =

p

(x� x

1

)

2

+ (y � y

1

)

2

(53)

This gives us all the parameters we need to get the size of the ball.

A.4 Bea
on Parameters

In the
ase of bea
ons, several parameters need to be set, based on experimental values.

1. The two bounding boxes that form the two se
tions of the bea
on are allowed to form a legal bea
on

if the number of pixels and number of runlengths in ea
h se
tion are at least one-half of that in the

other se
tion.

2. None of the two regions must be 'too big' in
omparison with the other. By 'too big' we refer to
ases

where the x and/or y
oordinate ranges of one se
tion are greater than 3�3:5 times the
orresponding

ranges of the other bounding box. If 'ul' and 'lr' denote the upper left and lower right
orners of the

bounding box, then, for the x
oordinates, we would
onsider either of the following equations as the

suÆ
ient
ondition for reje
tion of the formation of a bea
on with these two blobs.

(b1:lrx� b1:ulx+ 1) � 3 � (b2:lrx� b2:ulx+ 1)

(b2:lrx� b2:ulx+ 1) � 3 � (b1:lrx� b1:ulx+ 1).

Similarly for the y
oordinates:

(b1:lry � b1:uly + 1) � 3 � (b2:lry � b2:uly + 1)

(b2:lry � b2:uly + 1) � 3 � (b1:lry � b1:uly + 1).

The runregion size
he
ks (see Appendix A.1) help ensure the removal of bea
ons that are too small.

3. The x
oordinate of the
entroid of ea
h se
tion must lie within the x range values of that of the other

se
tion, i.e.,

b1:ulx � b2

entroidx

� b1:lrx

b2:ulx � b1

Centroidx

� b2:lrx.

4. The distan
e between se
tions (in number of pixels) is also used to de
ide whether two bounding boxes

an be
ombined to form a bea
on. In our
ase this threshold is 3 pixels.

5. Size extension: In the
ase of the bea
ons, similar to the ball (though not to that large a degree),

o

lusion by other robots
an
ause part of the bea
on to be '
hopped o�'. On the basis of our region

merging and bea
on-region-mat
hing size
onstraints, we
an still dete
t bea
ons with a fair amount

of o

lusion. But on
e the bea
ons have been determined, we extend the size of the bea
on su
h that

its dimensions
orrespond to that of the larger bea
on subse
tion determined (see Figure 19).

6. Bea
on Likelihoods: After the bea
on dimensions have been suitably extended, we use the estimated

size and the known aspe
t ratio in the a
tual environment to arrive at a likelihood measure for our

estimation. The bea
on has a Height : Width :: 2 : 1 aspe
t ratio. In the ideal
ase we would expe
t

a similar ratio in the image also. So we
ompare the aspe
t ratio in the image with the desired aspe
t

ratio and this provides us with an initial estimate of the likelihood of the estimate. Whenever there

are multiple o

urren
es of the same bea
on this value is used as a
riterion and the 'most-likely'

bea
on values are retained for further
al
ulations. Further, sin
e the o

urren
e of false positives is a

greater problem (for lo
alization) than the
ase where we miss some bea
on, we only use bea
ons with

a likelihood � 0:6 for lo
alization
omputations.

72

 (a) (b)

Figure 19: This �gure shows the basi
 bea
on size extension to
ompensate for partial o

lusions. Case (a)

is an example of verti
al extension while
ase(b) depi
ts an example of horizontal extension.

A.5 Goal Parameters

The parameters/heuristi
s for the goal were sele
ted experimentally and they a�e
t the performan
e of the

robot with respe
t to goal dete
tion. Some of them are as enumerated below:

1. We desire to be able to dete
t the goals a

urately both when they are at a distan
e and when they

are really
lose to the robot and in ea
h
ase the image
aptured by the robot (of the goal) and hen
e

the bounding boxes formed are signi�
antly di�erent. So we use almost the same
riteria as with

other obje
ts (runlengths, pixels, density, aspe
t ratio et
) but spe
ify ranges. The ranges are
hosen

appropriately; we �rst use stri
t
onstraints and sear
h for ideal goals that are
learly visible and are

at
lose range (this gets assigned a high likelihood - see next point) but if we fail to do so, we relax the

onstraints and try again to �nd the goals. In addition, we have slightly di�erent parameters tuned for

yellow and blue goals be
ause the identi�
ation of the two goals di�ers based on the lighting
onditions,

robot
amera settings et
.

� Runlengths: at a minimum we require 10� 14.

� Number of pixels: high values 3000-4000+, low values 200-400+.

� Aspe
t ratio: length/width : 1:1� 1:3 (at least) but not more than 2:5� 3:0.

� Density: at least 0.5+.

2. Tilt-angle test: In the
ase of the goals we do not want them to be either too high or too low with respe
t

to the horizon. So we apply the same tilt angle heuristi
 (Appendix A.2) but with two thresholds. In

our
ase, these angles are in the range: (7 to 10)

Æ

(high) and (�11 to � 8)

Æ

(low).

3. We also observed
onditions wherein a yellow blob appears in the ball, when some portions of the

orange ball have non-uniform illumination and/or re
e
tan
e properties (this should not be
onsidered

as the goal). Another heuristi
 is therefore
al
ulated to prevent this: the position of the blob
entroid

with respe
t to the ball
entroid. If the size of the goal is smaller and the
entroid lies somewhere on

the ball, we are likely to reje
t this estimate of the goal.

4. Goal Likelihood: After the goal dimensions have been determined, we use the estimated size and the

known aspe
t ratio in the a
tual environment to arrive at a likelihood measure for our estimation. The

goals have a Height : Width :: 1 : 2 aspe
t ratio. In the ideal
ase we would expe
t a similar ratio in

the image also. So we
ompare the aspe
t ratio in the image with the desired aspe
t ratio and this

provides us with an initial estimate of the likelihood of the estimate. Further, we only use goals with

a likelihood � 0:6 for lo
alization
omputations. In fa
t, we use the goal edges and not the goals for

lo
alization and they are assumed to have the same likelihood as the goal they belong to.

73

A.6 Ball Parameters

In the
ase of the ball, again several of the tests are the same as those in the
ase of the goals and/or bea
ons

but the parameters are di�erent, these are determined experimentally.

1. There are some general
onstraints:

� Density: at least 0:5+ and Aspe
t ratio: length/width : 0:7� 1:3 (stri
t).

� Relax Aspe
t ratio
onstraints but with

(a) Runlengths: at a minimum we require 10� 14 and,

(b) Number of pixels: high values 1000-1400+, low values 200-400+ or

(
) Size: extends to

1

3

of the length or height of the image frame.

2. Tilt test: The ball
annot '
oat in the air'. We apply the tilt-angle heuristi
 with an upper threshold

of (1 to 5)

Æ

.

3. Cir
le method: In this
ase, we ignore the ball size generated by this method if it is too small (2pixels),

too large (85pixels) or mu
h smaller than the 'un
ompensated' size that existed before the
ir
le method

was applied.

4. Ball Likelihood: Here, we
hoose a simple method to assign the likelihood: assign a high likelihood

(0:75� 0:9 depending on size of ball) if the
ir
le method generates a valid ball size and assign a low

likelihood (0:5� 0:7) if the
ir
le method fails and we are for
ed to a

ept the initial estimate.

A.7 Opponent Dete
tion Parameters

In this se
tion, we provide some of the parameters used in the opponent dete
tion pro
ess. As mentioned in

the vision module (Se
tion 4.4), the height of the blob is used to arrive at an estimate of the distan
e to the

opponent and its bearing with respe
t to the robot, by the same approa
h used with other obje
ts in the

image frame. Some sample thresholds:

1. For the basi
 dete
tion of a blob as a
andidate opponent blob, we use the
onstraints on runlengths,

number of pixels et
 whi
h de
ide the tradeo� between a

ura
y and the maximum distan
e at whi
h

the opponents
an be re
ognized.

� Pixel threshold: we set a threshold of 150� 300 pixels.

� Runlengths: we require around 10.

2. Tilt test: The opponents
annot
oat mu
h above the ground and
annot appear mu
h below the

horizon (in the ground) with the robot's head not being tilted mu
h. The threshold values here are 1

Æ

(high) and �10

Æ

(low).

3. Merging in vision: This is similar to the region merging pro
ess. Two blobs that are reasonably
lose

in the visual frame are merged if the interblob distan
e is less in the range of 20� 30 pixels. Varying

the threshold varies the opponent dete
tion 'resolution' i.e. how far two opponents have to be to be

re
ognized as two di�erent robots.

A.8 Opponent Blob Likelihood Cal
ulation

We use an extremely simple approa
h to determine the likelihood of the opponents found in the image. This

is done by
omparing the properties of the opponent blob with the 'ideal' values (those that
orrespond to the

a
tual presen
e of an opponent) determined by experimentation (some are listed in the previous appendix).

� A member of the opponent list that has more than 450� 500 pixels and more than 10 runlengths is

given a very high likelihood (0:9+).

74

� For other members, we make the likelihood proportional to the maximum based on the number of

pixels.

� Blobs that have low probability are not a

epted in the list of opponents. Also, these get eliminated

very easily during merging with estimates from other teammates.

A.9 Coordinate Transforms

Consider the
ase where we want to transform from the lo
al
oordinate frame to the global
oordinate

frame. Figure 20 shows the basi

oordinate system arrangement. To �nd the position of any point (x

l

; y

l

)

given in the lo
al
oordinate system (x; y), with respe
t to the global
oordinate system (X;Y), we use the

knowledge of the fa
t that the lo
al
oordinate system has its origin at (p

x

; p

y

) and is oriented at an angle

� with respe
t to the global
oordinate frame.

theta

(p_x, p_y)

(0,0)

y x

Y

X

(x_l, y_l)

Figure 20: This �gure shows the basi
 global and lo
al
oordinate systems.

0

�

X

g

Y

g

1

1

A

=

0

�

os(�) � sin(�) p

x

sin(�)
os(�) p

y

0 0 1

1

A

0

�

x

l

y

l

1

1

A

(54)

By a similar matrix transform we
an move from the global
oordinate frame to the lo
al
oordinate

frame.

0

�

x

l

y

l

1

1

A

=

0

�

os(�) � sin(�) �p

x

os(�)� p

y

sin(�)

sin(�)
os(�) p

x

sin(�)� p

y

os(theta)

0 0 1

1

A

0

�

X

g

Y

g

1

1

A

(55)

These are the equations that we refer to whenever we speak about transforming from lo
al to global

oordinates or vi
e versa. For more details on
oordinate transforms in 2D and/or 3D see [9℄.

75

Referen
es

[1℄ Hiroaki Kitano, Minoru Asada, Yasuo Kuniyoshi, Itsuki Noda, and Eii
hi Osawa. RoboCup: The Robot

World Cup Initiative. Pro
eedings of the First International Conferen
e on Autonomous Agents. February,

1997, pp. 340{347.

[2℄ Manuela Veloso, S
ott Lenser, Douglas Vail, Maayan Roth, Ashley Stroupe, and Sonia Chernova.

CMPa
k-02: CMU's Legged Robot So

er Team. 2002.

http://www.openr.org/robo
up/
ode2002SDK/CMU/
mu teamdes
.pdf.

[3℄ James Bru
e, Tu
ker Bal
h, and Manuela Veloso. Fast and Inexpensive Color Image Segmentation for

Intera
tive Robots. In Pro
eedings of IROS-2000, Japan, O
tober 2000.

http://www-2.
s.
mu.edu/ mmv/papers/wirevision00.pdf.

[4℄ Spen
er Chen, Martin Siu, Thomas Vogelgesang, Tak Fai Yik, Bernhard Hengst, Son Bao Pham, and

Claude Sammut. The UNSW RoboCup 2001 Sony Legged League Team. 2001

http://www.
se.unsw.edu.au/ robo
up/2002site/

[5℄ H.-D. Burkhard, U. D�u�ert, J. Ho�mann, M. J�ungel, M. L�otzs
h, R. Brunn, M. Kallnik, N. Kuntze, M.

Kunz, S. Petters, M. Risler, O. v. Stryk, N. Kos
hmieder, T. Laue, T. R�ofer, Spiess, A. Cesarz, I. Dahm,

M. Hebbel, W. Nowak, J. Ziegler. 2002. German Team 2002.

http://www.robo
up.de/germanteam/GTeng/index.html.

[6℄ T. R�ofer and M. J�ungel, Vision-Based Fast and Rea
tive Monte-Carlo Lo
aliza-

tion, In: Pro
. International Conferen
e on Roboti
s and Automation (ICRA-2003).

http://www.robo
up.de/germanteam/GTeng/index.html.

[7℄ Rafael C. Gonzalez and Ri
hard E. Woods, Digital Image Pro
essing, Prenti
e Hall, 2002.

[8℄ Ri
hard O. Duda, Peter E. Hart and David G. Stork, Pattern Classi�
ation, John Wiley and Sons, In
.,

New York 2001.

[9℄ Robert J. S
hilling, Fundamentals of Roboti
s: Analysis and Control, Prenti
e Hall Publi
ations, 2000.

[10℄ Ashley W. Stroupe, Martin C. Martin and Tu
ker Bal
h, Merging Probabilisti
 Observations for Mobile

Distributed Sensing, CMU-RI-00-30, Carnegie Mellon University, Pittsburgh, PA, 2000.

[11℄ Control Tutorials for Matlab: PID Tutorial.

http://r
lsgi.eng.ohio-state.edu/matlab/PID/PID.html.

[12℄ Bernhard Hengst, Darren Ibbotson, Son Bao Pham and Claude Sammut, Omnidire
tional Motion for

Quadruped Robots, RoboCup International Symposium, August 7-8, 2001 in Le
ture Notes in Computer

S
ien
e, Le
ture Notes in Arti�
ial Intelligen
e LNAI 2377 A. Birk, S. Corades
hi, S. Tadokoro (Eds.):

RoboCup 2001: Robot So

er World Cup V, Springer 2002. p.368 �..

76

