CMRoboBits: Creating an Intelligent AIBO Robot

Instructors: Prof. Manuela Veloso &

Dr. Paul E. Rybski

TAs: Sonia Chernova & Nidhi Kalra

15-491, Fall 2004

http://www.andrew.cmu.edu/course/15-491

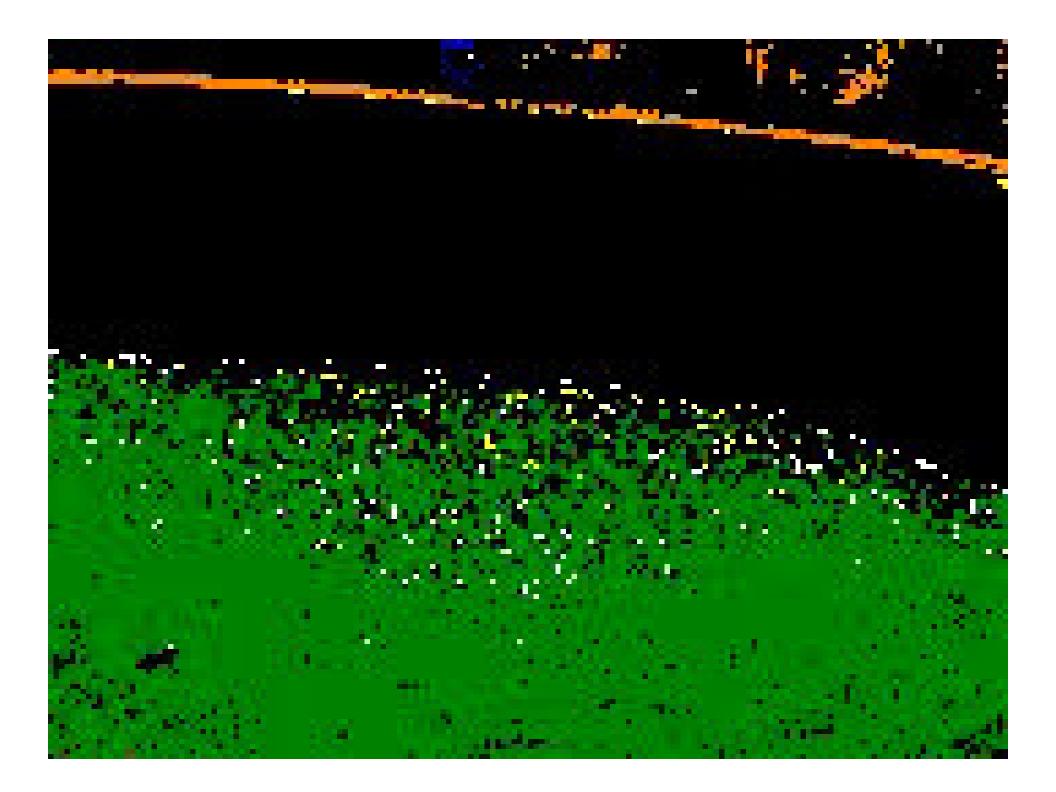
Computer Science Department

Carnegie Mellon

AIBO Vision

- Goals of this lecture
 - Illustrate the underlying processing involved with the AIBO vision system
 - Describe the high-level object recognition system
 - Provide enough background so that you can consider adding your own object detectors into the AIBO vision system





What is Computer Vision?

- The process of extracting information from an image
 - Identifying objects projected into the image and determining their position
 - The art of throwing out information that is not needed, while keeping information needed
- A very challenging research area
 - Not a solved problem!

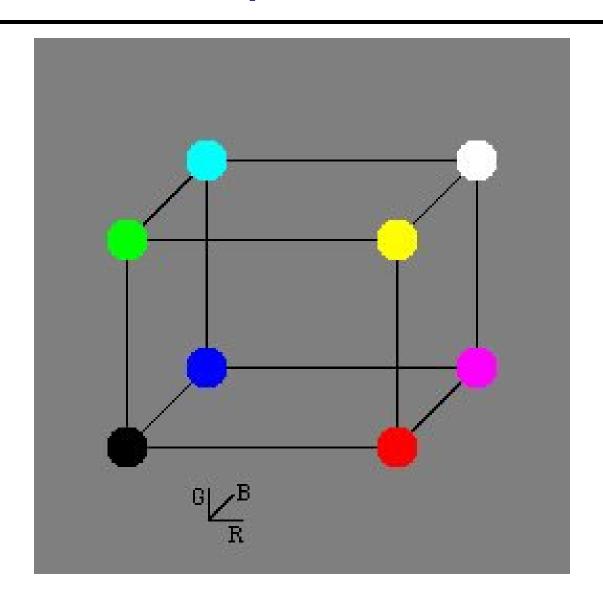
AIBO Vision

- AIBO camera provides images formatted in the YUV color space
- Each image is an array of 176 x 144 pixels

Color Spaces

- Each pixel is a 3 dimensional value
 - Each dimension is called a *channel*
- There are multiple different possible color representations
 - RGB R=red, G=green, B=blue
 - YUV Y=brightness, UV=color
 - HSV H=hue, S=saturation, V=brightness

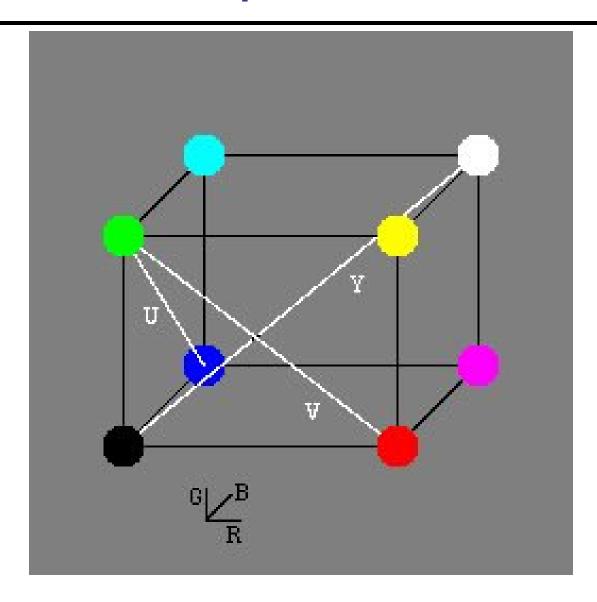
Color Spaces - RGB



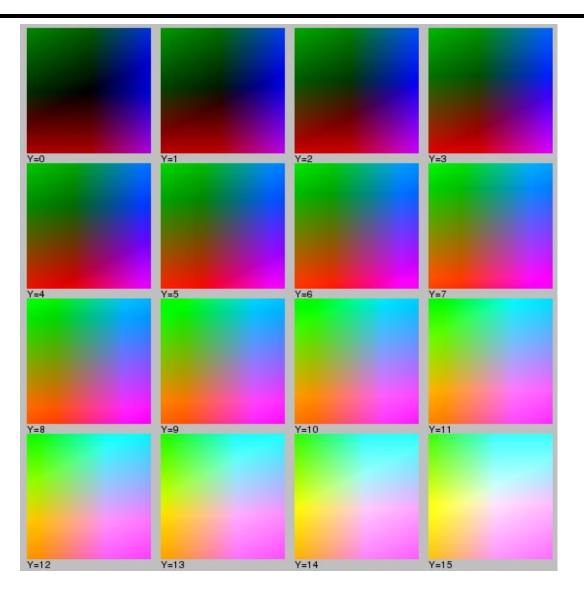
Color Spaces - YUV

- The AIBO camera provides images in YUV (or YCrCb) color space
 - Y Luminance (brightness)
 - U/Cb Blueness (Blue vs. Green)
 - V/Cr Redness (Red vs. Green)
- Technically, YUV and YCrCb are slightly different, but this does not matter for our purposes
 - We will refer to the AIBO color space as YUV

Color Spaces – YUV

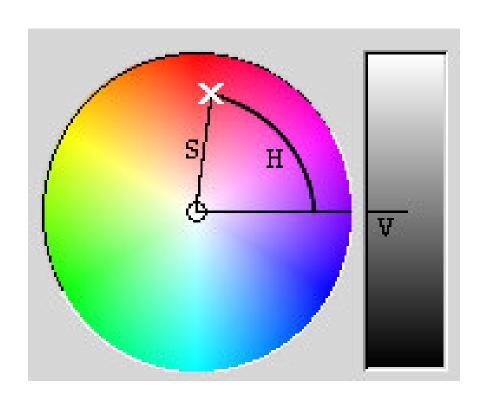


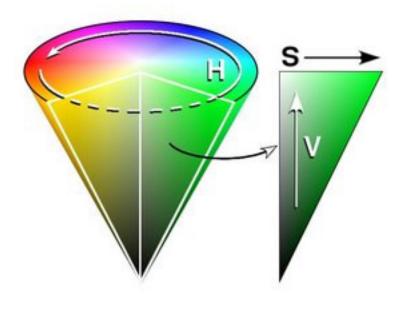
Color Spaces – YUV



15-491 CMRoboBits

Color Spaces – HSV





www.wordiq.com/definition/HSV_color_space

Color Spaces - Discussion

RGB

- Handled by most capture cards
- Used by computer monitors
- Not easily separable channels

YUV

- Handled by most capture cards
- Used by TVs and JPEG images
- Easily workable color space

HSV

- Rarely used in capture cards
- Numerically unstable for grayscale pixels
- Computationally expensive to calculate

Image RGB

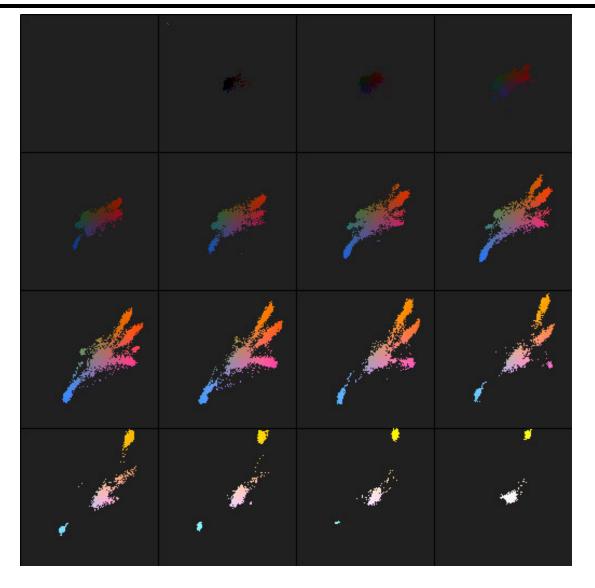
Image Raw

R=Y

G=U

B=V

YUV Histogram



Note: the U and V axes are swapped from the histogram in the previous slides (blue is in lower left corner in this slide but blue is in upper right corner in previous slide)

15-491 CMRoboBits

Vision Overview

- CMRoboBits vision is divided into two parts
- Low level
 - Handles bottom-up processing of image
 - Provides summaries of image features
- High level
 - Performs top-down processing of image
 - Uses object models to filter low-level vision data
 - Identifies objects
 - Returns properties for those objects

Low-Level Vision Overview

- Low level vision is responsible for summarizing relevant-to-task image features
 - Color is the main feature that is relevant to identifying the objects needed for the task
 - Important to reduce the total image information
- Color segmentation algorithm
 - Segment image into symbolic colors
 - Run length encode image
 - Find connected components
 - Join nearby components into regions

Color Segmentation

- Goal: semantically label each pixel as belonging to a particular type of object
- Map the domain of raw camera pixels into the range of symbolic colors C

$$F: y, u, v \rightarrow c \in C$$

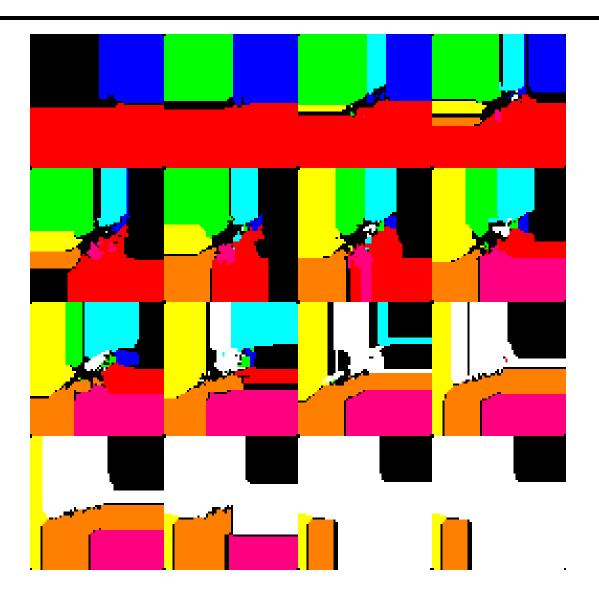
- C includes ball, carpet, 2 goal colors, 1 additional marker color, 2 robot colors, walls/lines and unknown
- Reduces the amount of information per pixel roughly by 1.8M
 - Instead of a space of 256³ values, we only have 9 values!

Before Segmentation

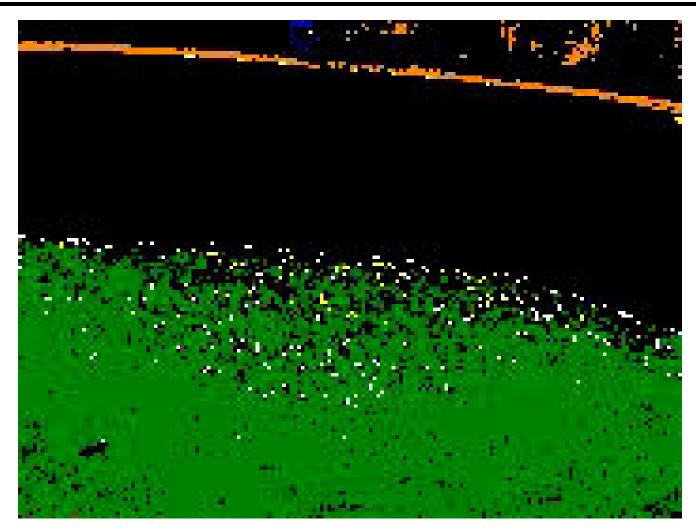
Ideal Segmentation

Result of Segmentation

Color Class Thresholds



Potential Problems with Color Segmentation



Color Segmentation Analysis

Advantages

- Quickly extract relevant information
- Provide useful representation for higher-level processing
- Differentiate between YUV pixels that have similar values

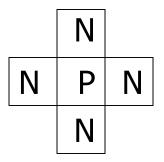
Disadvantages

- Cannot segment YUV pixels that have identical values into different classes
- Generate smoothly contoured regions from noisy images

Turning Pixels into Regions

- A disjoint set of labeled pixels is still not enough to properly identify objects
- Pixels must be grouped into spatiallyadjacent regions
 - Regions are grown by considering local neighborhoods around pixels

4-connected neighborhood

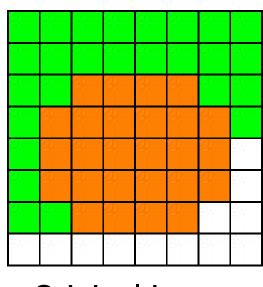


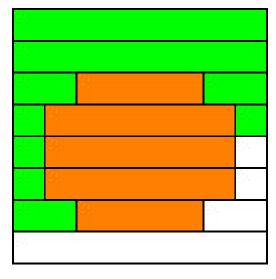
N	Ν	Z
N	Р	Z
N	N	N

8-connected neighborhood

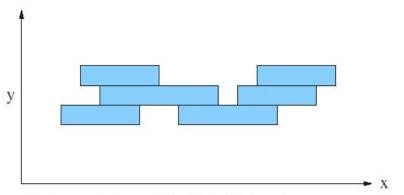
First Step: Run Length Encoding

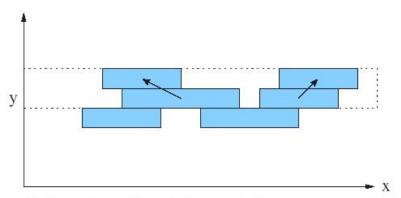
- Segment each image row into groups of similar pixels called *runs*
 - Runs store a start and end point for each contiguous row of color





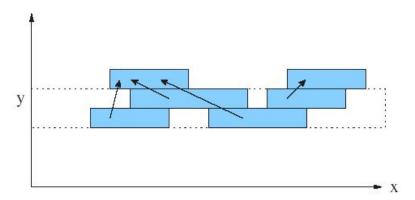
Second Step: Merging Regions



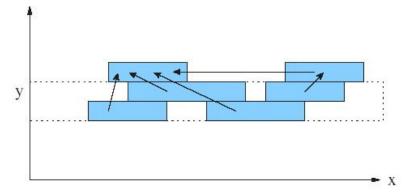


1: Runs start as a fully disjoint forest 2: Scannin

2: Scanning adjacent lines, neighbors are merged



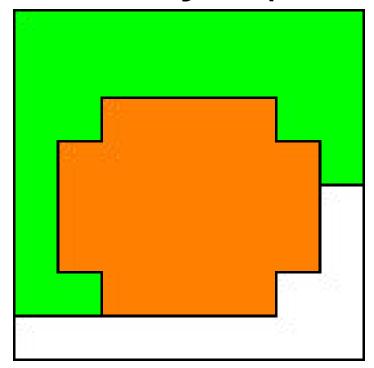
3: New parent assignments are to the furthest parent



4: If overlap is detected, latter parent is updated

Final Results

- Runs are merged into multi-row regions
- Image is now described as contiguous regions instead of just pixels



Data Extracted from Regions

- Features extracted from regions
 - Centroid
 - Mean location
 - Bounding box
 - Max and min (x,y) values
 - Area
 - Number of pixels in box
 - Average color
 - Mean color of region pixels
- Regions are stored by color class and sorted by largest area
- These features let us write concise and fast
 object detectors

High-Level Vision Overview

- Responsible for finding relevant-to-task objects in image
- Uses features extracted by low-level vision
- Takes models of known objects and attempts to identify objects in the list of lowlevel regions
- Generates a confidence of a region being the object of interest
 - Useful for differentiating between multiple classes
- Generates an estimate of the object's position in egocentric coordinates

Object Detection Process

- Produces a set of candidate objects that might be this object from lists of regions
 - Given 'n' orange blobs, is one of them the ball?
- Compares each candidate object to a set of models that predict what the object would look like when seen by a camera
 - Models encapulate all assumptions
 - Also called filtering
- Selects best match to report to behaviors
 - Position and quality of match are also reported

Filtering Overview

- Each filtering model produces a number in [0.0, 1.0] representing the certainty of a match
 - Some filters can be binary and will return either 0.0 or 1.0
- Certainty levels are multiplied together to produce an overall match
 - Real-valued range allows for areas of uncertainty
 - Keeps one bad filter result from ruining the object
 - Multiple bad observations will still cause the object to be thrown out

Example: Ball Detection

- In robot soccer, having a good estimate of the ball is extremely important
 - A lot of effort has gone into good filters for detecting the ball position
- Many filters are used in CMRoboBits
 - Most of these filters were determined by trial and error and hand-coded
 - Many filters contain "magic" numbers that work well in practice but do not necessarily have a theoretically sound basis

Ball – Filtering Models

- Minimum size
 - Makes sure the ball has a bounding box at least 3 pixels tall and wide and 7 pixels total area
- Square bounding box
 - Makes sure the bounding box is roughly square
 - Uses an unnormalized Gaussian as the output
 - Output is as follows:

$$d = \frac{w - h}{w + h}$$

$$o = e^{-\left(\frac{d}{C}\right)^2/2}$$
 C=0.2 if on edge of image 0.6 otherwise

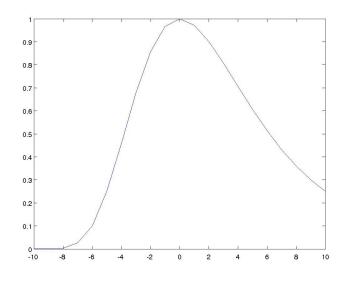
What Does the Filter Look Like?

Filter

$$d = \frac{w - h}{w + h}$$

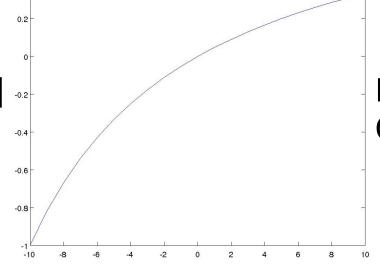
$$o = e^{-\left(\frac{d}{C}\right)^2/2}$$

Plot: o C=0.2

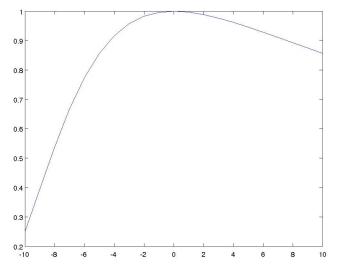


Plot: d H=10

W=[0-20] -0.2



Plot: o C=0.6



Ball – Filtering Models

- Area ratio
 - Compares the area covered by the pixels to the area covered by the bounding box

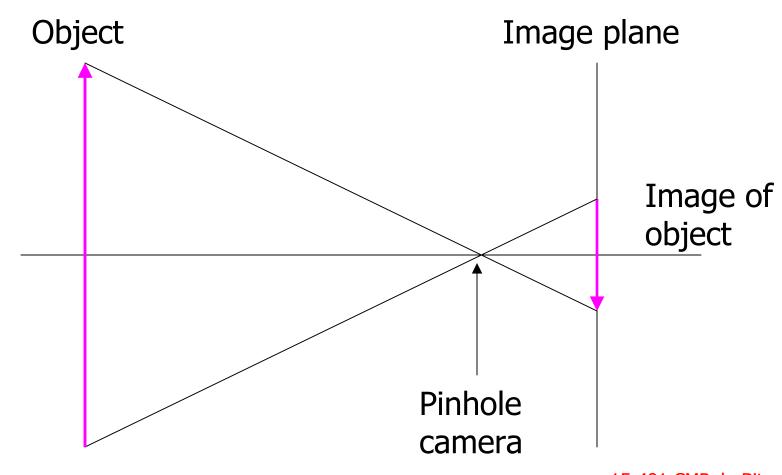
$$m=\pi/4*w*h$$
 Area of ellipse with major and minor axes computed by bounding box $d=\frac{m-a}{m+a}$ $O=e^{-\left(\frac{d}{C}\right)^2/2}$ C=0.2 if on edge of image 0.6 otherwise

- Elevation
 - Binary filter which ensures the ball is on the ground (less than 5 degrees in elevation)

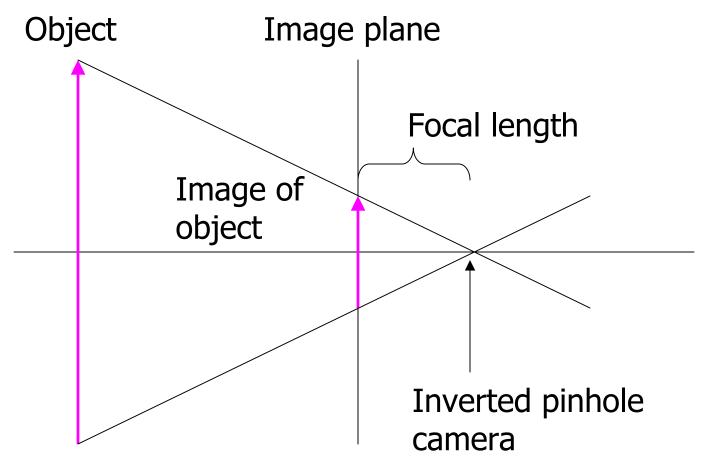
Ball Distance Calculation

- The size of the ball is known
- The kinematics of the robot are known
- Given a simplified camera projection model, the distance to the ball can be calculated

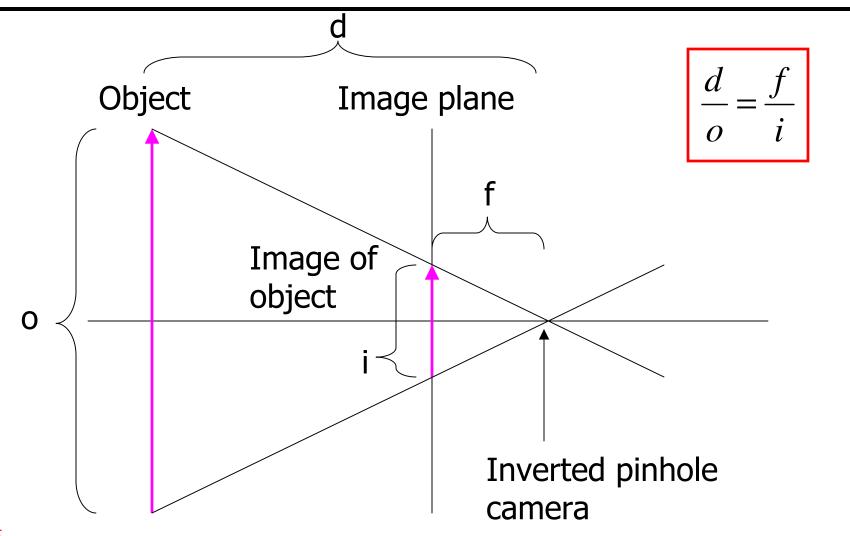
Pinhole Camera Model



Inverted Pinhole Camera Model



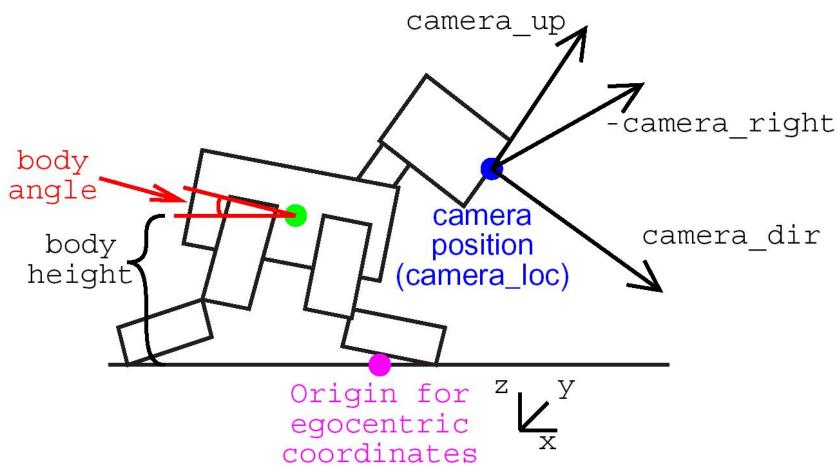
Calculating Distance



Calculation of Camera Position

- Position of camera is calculated based on body position and head position w.r.t body
- Body position is known from walk engine
- Head position relative to body position is found from forward kinematics using joint positions
- Camera position
 - camera_loc is defined as position of camera relative to egocentric origin
 - camera_dir, camera_up, and camera_down are unit vectors in egocentric space
 - Specify camera direction, up and right in the image

Calculation of Camera Position

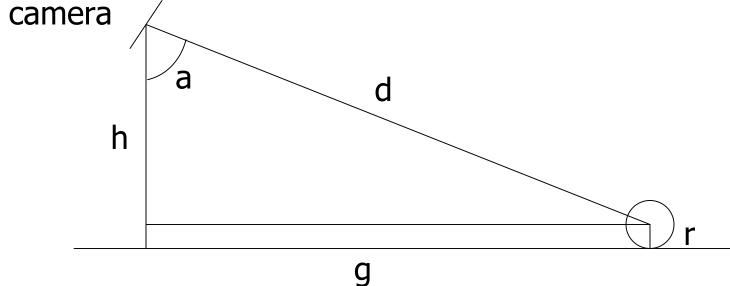


Ball Position Estimation

- Two methods are used for estimating the position of the ball
 - The first calculates the camera angle from the ball model
 - The second uses the robot's encoders to calculate the head angle
- The first is more accurate but relies on the pixel size of the ball
 - This method is chosen if the ball is NOT on the edge of the image
 - Partial occlusions will make this estimate worse

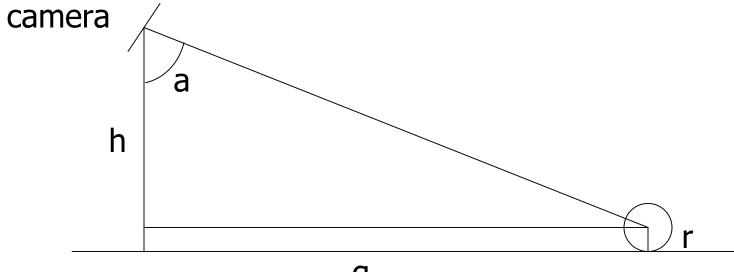
Ball Position Estimation

- Ball position estimation problem is overconstrained.
 - g is the unknown



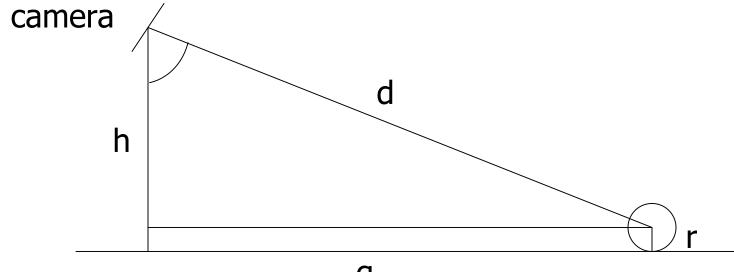
Ball – Position Estimation

- This method works all of the time
 - Camera angle computed from kinematics
 - Used when ball is on edge of image



Ball – Position Estimation

- This method is more accurate
 - Requires accurate pixel count
 - Used only when ball is near center of image



Calculating Projection Error

- Models the expected relative error in projection between the 2 ball estimation positions
 - Filters out candidate region if the two methods do not agree

$$x = \max \left(\frac{d}{5} \right) - 0.5,0$$

$$o = e^{-\left(\frac{x}{0.75}\right)^2/2}$$

d=angular difference in camera angle between two methods

Additional Color Filters

- The pixels around the ball are analyzed
 - Red vs. area
 - Filters out candidate balls that are part of red robot uniform
 - Green filter
 - Ensures the ball is near the green floor
- If the ball is farther than 1.5m away
 - Average "redness" value of the ball is calculated
 - If too red, then the ball is assumed to be the fringe of the red robot's uniform

End Result – Accurate Ball Position

Summary

- Computer vision
- Color spaces
- Low-level vision
 - Color segmentation
 - Colored region extraction
- High-level vision
 - Object filters
 - Example: tracking the ball

