NAO H25

HUMANOID ROBOT PLATFORM

H25 Secondary Education / Higher Education & Research editions

ALL PURPOSE HUMANOID ROBOT

- INTEL ATOM PROCESSOR
- ENHANCED AUDIO AND VISUAL CAPABILITIES
- NATURAL MOTION REFLEXES

KEY BENEFITS

- Fully programmable, open and autonomous: make the most of a full integration of state-of-the-art hardware and software
- Easy to use and understand: achieve better project results and improve learning effectiveness
- Attractive and motivating: highly increase and catch audience attention

USE CASES

- STEM (Science, Technology, Engineering and Mathematics) training and exercises
- Scientific researches in autism, personal assistance...
- Communication tool for events such as opening house days
ENHANCED AUDIO AND VISUAL CAPABILITIES

Camera
Thanks to improved camera sensors, we provide higher sensitivity in VGA for better low light perception. For image processing work on the robot CPU, you can use up to 30 images/second in HD resolution. NAO can move the head by 239° horizontally and by 68° vertically, and his camera can see at 61° horizontally and 47° vertically. Result: NAO has a great capacity to sense his environment.

Object Recognition
NAO has the capacity to recognize a large quantity of objects. Once the object is saved thanks to Choregraphe software, if he sees it again, NAO is able to recognize and say what it is.

Face Detection and Recognition
It’s one of the best known features for interaction. NAO can detect and learn a face in order to recognize it next time.

Text to Speech
NAO is able to speak up to 9 languages. With a “say box” in Choregraphe you can insert text and modify voice parameters as you wish. NAO will say the text correctly, with the right punctuation and intonation.

Automatic Speech Recognition
Speech recognition is at the heart of intuitive human-robot interaction. That’s why we have chosen the best technological partner, Nuance, to develop stable and powerful speech recognition. NAO is now able to hear you from 2 meters away, recognize a complete sentence or just few words in the sentence. Result: more fluidity and natural conversations.

Sound Detection and Localization
Our environment is made of sounds that NAO, like us, is able to detect and localize in the space thanks to microphones all around his head.

NATURAL MOTION REFLEXES

Smart Stiffness
A unique feature which automatically adapts the power needed by the motors during the movements of the robot. Result: better use of the drive components as well as energy savings for the battery.

Fall Manager
NAO may fall, but we taught him how to stand up by himself. We went even further and provided him with a fall detection system: before hitting the ground, NAO protects himself with his arms.

Anti Self collision
This motion feature prevents NAO’s arms from colliding with the rest of his body. NAO always knows the position of his head, torso, legs and arms: he avoids accidental and unwanted limb collisions.

Resource Manager
NAO’s biggest challenge is to merge and order conflicting commands. He’s able to interrupt/stop or adjust the behavior in progress before executing a new required behavior.
EXAMPLES OF APPLICATIONS

RESEARCH
- Human Robot Interaction
- Perception & Cognition
- Object Category Recognition & Detection
- Modeling Expressive Gestures
- Localization & Navigation
- Movement Synchronization of Robot
- Structure & Motion Analysis
- Psychology & Social Robotics
- Artificial Intelligence

EDUCATION
- Programming
- Math & Physics Concepts for Robotic Applications
- Motion Planning
- Introduction to Object/Speech Recognition & Detection
- Create Games & Stories
- Mechatronics
- Automation

REFERENCES

EUROPE
- Paris Descartes University
- University of Bremen
- University of Hertfordshire
- University of Jaume
- Science Museum of London
- High School Tech of Nîmes

NORTH AMERICA
- Massachusetts Institute of Technology
- Harvard University
- Carnegie Mellon University
- University of Texas, Austin
- Science Museum of Chicago
- High School Central Tech Erie

ASIA
- University of Tokyo
- Shanghai Jiao Tong University
- National University of Seoul
- National Taiwan University
- New South Wales University
- Science Museum of Shanghai

WWW.ALEDARAN.ROBOTICS.COM
TECHNICAL SPECIFICATIONS

ELECTRICAL

INPUT
- 100 to 240 Vac - 50/60Hz - Max 1.2A

OUTPUT
- 25.2 Vdc - 2A

BATTERY

<table>
<thead>
<tr>
<th>Type</th>
<th>Lithium-Ion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nominal voltage/capacity</td>
<td>21.6V / 2.15Ah</td>
</tr>
<tr>
<td>Max charge voltage</td>
<td>24.4V</td>
</tr>
<tr>
<td>Recommended charge current</td>
<td>2A</td>
</tr>
<tr>
<td>Max charge/discharge current</td>
<td>3.0A / 2.0A</td>
</tr>
<tr>
<td>Energy</td>
<td>27.4Wh</td>
</tr>
<tr>
<td>Charging duration</td>
<td>5h</td>
</tr>
<tr>
<td>Autonomy</td>
<td>60min (Active use) / 90min (Normal use)</td>
</tr>
</tbody>
</table>

MOTHER BOARD

CPU PROCESSOR
- ATOM Z530
- Cache memory: 512KB
- Clock speed: 1.66GHz
- FSB speed: 533MHz

RAM
- 1GB

FLASH MEMORY
- 2GB

MICRO SDHC
- 8GB

CONNECTION

ETHERNET
- 1×RJ45 - 10/100/1000 BASE T

WIFI
- IEEE 802.11b/g

AUDIO

LOUD SPEAKERS
- ×2 lateral
 - Diameter: 36mm
 - Impedance: 8ohms
 - Sp level: 87dB/-/3dB
 - Freq range: up to ~20kHz
 - Input: 2W

MICROPHONE
- ×4 on the head
 - Sensitivity: -40 +/- 3dB
 - Frequency range: 20Hz-20kHz
 - Signal/noise ratio: 58dB

CONSTRUCTION

DIMENSION (H×D×W)
- 573×275×311mm / 22.5×10.8×12.2 inch

WEIGHT
- 5.2kg / 11.4 lb

CONSTRUCTION MATERIAL
- ABS-PC / PA-66 / XCF-30

LANGUAGES

TEXT TO SPEECH
- English, French, Spanish, German, Italian, Chinese, Japanese, Korean, Portuguese

AUTOMATIC SPEECH RECOGNITION
- English, French, Spanish, German, Italian, Chinese, Japanese, Korean

VISION

CAMERAS
- ×2 on front

Sensor model
- MT9M114

Sensor type
- 50C Image Sensor

IMAGING ARRAY

Resolution	1.22MP
Optical format	1/6inch
Active Pixels [H×V]	1288×968

SENSITIVITY

Pixel size	1.9µm
Dynamic range	70dB
Signal/Noise ratio [max]	37dB
Responsivity	2.24 V/lux-sec [960p]
	8.96 V/lux-sec [VGA]

OUTPUT

Camera output	960pB30fps
Data Format	YUV422
Shutter type	ERS [Electronic Rolling Shutter]

VIEW

Field of view	72.6°FOV (60.9°HFOV, 47.6°VFOV)
Focus range	30cm ~ infinity
Focus type	Fixed focus

FRAMERATE

<table>
<thead>
<tr>
<th>Resolution</th>
<th>Embedded Gigabit Ethernet 100Mb Ethernet Wifi g</th>
</tr>
</thead>
<tbody>
<tr>
<td>160×120px</td>
<td>30fps 30fps 30fps 30fps</td>
</tr>
<tr>
<td>320×240px</td>
<td>30fps 30fps 30fps 11fps</td>
</tr>
<tr>
<td>640×480px</td>
<td>30fps 30fps 12fps 2.5fps</td>
</tr>
<tr>
<td>1280×960px</td>
<td>29fps 10fps 3fps 0.5fps</td>
</tr>
</tbody>
</table>

Note: using the video stream in remote highly depends on the network and the video resolution chosen. All frame rates depend on the CPU usage. Values are calculated with a CPU fully dedicated to images gathering.
TECHNICAL SPECIFICATIONS

IR

<table>
<thead>
<tr>
<th>NUMBER</th>
<th>×2 on front</th>
</tr>
</thead>
<tbody>
<tr>
<td>WAVELENGTH</td>
<td>940nm</td>
</tr>
<tr>
<td>EMISSION ANGLE</td>
<td>+/-60°</td>
</tr>
<tr>
<td>POWER</td>
<td>8mW/sr</td>
</tr>
</tbody>
</table>

SONAR

EMMITTERS	×2 on front
RECEIVER	×2 on front
FREQUENCY	40kHz
SENSITIVITY	-86dB
RESOLUTION	1cm
DETECTION RANGE	0.25m to 2.55m
EFFECTIVE CONE	60°

INERTIAL UNIT

GYROMETER	×2
Axis	1 per gyrometer
Precision	5%
Angular speed	~500°/s

ACCELEROMETER	×1
Axis	3
Precision	1%
Acceleration	~2g

FSR (FORCE SENSITIVE RESISTORS)

| RANGE | 0 to 110N |
| RANGE | ×4 per feet |

POSITION SENSORS

| MRE (Magnetic Rotary Encoder) | ×36 |
| Using hall effect sensor technology |
| Precision: 12bits / 0.1° |

SOFTWARE

OPEN NAO	Embedded GNU/Linux Distribution based on Gentoo
ARCHITECTURE	×86
PROGRAMMING	Embedded: C++ / Python
	Remote: C++ / Python / .NET / Java / MatLab

LEDS

PLACEMENT	QUANTITY	DESCRIPTION
Tactile Head	×12	16 Blue levels
Eyes	2×8	RGB FullColor
Ears	2×10	16 Blue levels
Chest button	×1	RGB FullColor
Feet	2×1	RGB FullColor

CONTACT SENSOR

<table>
<thead>
<tr>
<th>H25</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chest Button</td>
</tr>
<tr>
<td>Foot Bumper</td>
</tr>
<tr>
<td>Tactile Head</td>
</tr>
<tr>
<td>Tactile Hand</td>
</tr>
</tbody>
</table>

DEGREES OF FREEDOM

<table>
<thead>
<tr>
<th>H25</th>
</tr>
</thead>
<tbody>
<tr>
<td>HEAD</td>
</tr>
<tr>
<td>ARM (IN EACH)</td>
</tr>
<tr>
<td>PELVIS</td>
</tr>
<tr>
<td>LEG (IN EACH)</td>
</tr>
<tr>
<td>HAND (IN EACH)</td>
</tr>
</tbody>
</table>
MOTOR SPECIFICATIONS

HEAD JOINTS
- **HeadYaw**: Type 3
- **HeadPitch**: Type 3

ARM JOINTS
- **ShoulderPitch**: Type 3
- **ShoulderRoll**: Type 3
- **ElbowYaw**: Type 3
- **ElbowRoll**: Type 3
- **WristYaw**: Type 2
- **Hand**: Type 2

LEG JOINTS
- **HipYawPitch**: Type 1
- **HipRoll**: Type 1
- **HipPitch**: Type 1
- **KneePitch**: Type 1
- **AnklePitch**: Type 1
- **AnkleRoll**: Type 1

DESCRIPTION OF THE MOTORS

Legend: Joint Name[Motor Type][Reducer Type]

MOTOR SPECIFICATIONS

<table>
<thead>
<tr>
<th>MODEL</th>
<th>MOTOR TYPE 1</th>
<th>MOTOR TYPE 2</th>
<th>MOTOR TYPE 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>22NTB2213P</td>
<td>17N88208E</td>
<td>16T83210E</td>
</tr>
<tr>
<td>No load speed</td>
<td>8300rpm ±10%</td>
<td>8400rpm ±12%</td>
<td>10700rpm ±10%</td>
</tr>
<tr>
<td>Stall torque</td>
<td>68mN.m ±8%</td>
<td>9.4mN.m ±8%</td>
<td>14.3mN.m ±8%</td>
</tr>
<tr>
<td>Continuous torque</td>
<td>16.1mN.m max</td>
<td>4.9mN.m max</td>
<td>6.2mN.m max</td>
</tr>
</tbody>
</table>

SPEED REDUCTION RATIO

TYPE A
- **Reduction ratio**: 201.3
- **Reduction ratio**: 150.27

TYPE C
- **Reduction ratio**: 50.61

TYPE B
- **Reduction ratio**: 130.85
- **Reduction ratio**: 173.22

TYPE D
- **Reduction ratio**: 36.24

CERTIFICATIONS & APPROVALS
- **Europe**: CE (Declaration of Conformity)
- **USA**: FCC

ELECTROMAGNETIC COMPATIBILITY
- EN 301 489-1 / EN 301 489-17 / EN 300 328
- EN 62311:2008 / FCC PART15, Class A
- IEC 60950-1:2005 (2nd edition)

SAFETY