Model Based Learning in continuous state spaces

Doran Chakraborty
A comparative study

- Random Updates
- Prioritized sweeping
- Trajectory sampling
empirical results
Mountain car problem

\[-1 \leq x_t \leq 1 \]

\[-2 \leq v_t \leq 2. \]

\[q_t = \begin{cases}
2 \cdot x + 1 & \text{if } x < 0 \\
\frac{1}{(1+5x_t^2)^{3/2}} & \text{if } x \geq 0
\end{cases} \]

\[a_t = \frac{f_t}{m \cdot \sqrt{1 + q_t^2}} - \frac{g \cdot q_t}{1 + q_t^2} \]

\[x_{t+1} = x_t + v_t \cdot \Delta t + \frac{a \cdot \Delta t^2}{2} \]

\[v_{t+1} = v_t + a \cdot \Delta t \]
Model Based RL in continuous state spaces

1. Initially: \(w(t) := 0, \forall t \in \text{Tiles}; \quad s_{sim} = s_0; \quad a_{sim} = \text{policy}(s_{sim}) \)

2. Start of Trial: \(s := s_0, a := \text{policy}(s) \)

3. Take action \(a \); observe reward \(r \) and next state \(s' \)

4. \(a' := \text{policy}(s) \)

5. Learn:
 \[
 \epsilon := r + \sum_{s' \in \text{Tiles}(s', a')} w(t') - \sum_{s \in \text{Tiles}(s, a)} w(t)
 \]
 \[
 w(t) := w(t) + \frac{\epsilon}{T} \cdot \epsilon, \quad \forall t \in \text{Tiles}(s, a)
 \]

6. Update Model: Add a new observation \(s' \) to a list of past observations kept in the hash table entry \(m(s, a) \). If \(s' \) is already in the table then increment the number of times \(s' \) has been observed by 1

7. Sample Model:
 Repeat \(K \) times
 take action \(a_{sim} \):
 use model to compute the predicted next state, \(s'_{sim} \), and reward, \(r' \);
 if \(s'_{sim} \) is the terminal state
 set \(s_{sim} := s_0, a_{sim} := \text{policy}(s_{sim}) \)
 go to the beginning of the repeat loop

 \[
 a'_{sim} := \text{policy}(s_{sim});
 \]
 learn:
 \[
 \epsilon := r + \sum_{s' \in \text{Tiles}(s'_{sim}, a'_{sim})} w(t') - \sum_{s \in \text{Tiles}(s_{sim}, a_{sim})} w(t)
 \]
 \[
 w(t) := w(t) + \frac{\epsilon}{T} \cdot \epsilon, \forall t \in \text{Tiles}(s_{sim}, a_{sim})
 \]

8. Loop: \(a := a'; \quad s := s' \); if \(s' \) is the terminal state, go to 2, else go to 3
Input Representation

- Need to represent the T function
- \(f(x,v) \rightarrow x \) \(f(x,v) \rightarrow v \) for all actions
- CMACS used to learn the function
- Model Size = Resolution X Num of Layers

What makes a good model?
Choosing a model
Model Early method