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Reinforcement Learning

• Task: Maximize rewards in an unknown environment
• Only given: the state-action interface
• Much research: learn policies given an arbitrary interfaces
• Our research: discover interfaces that are easier to learn
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Value-Based RL

State

Reward

Action

Agent

Learn: a control policy

“What action should I choose in each state?”
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Value-Based RL

State

Reward

Action

PassMove Shoot

[Game State]

Learn: Q : S × A → R

“How much reward can I earn starting at s by choosing a?”
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Value-Based RL

State

Reward

Action

PassMove Shoot

MyPosition

AllyPosition1

AllyPosition2

GoaliePos

OppPosition1

OppPosition2

Score

Energy

Time

Learn: Q : F1 × F2 × F3 × F4 × F5 × F6 × F7 × F8 × F9 ×A → R

In practice: high-dimensional state spaces
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Value-Based RL

State

Reward

Action

PassMove Shoot

MyPosition

AllyPosition1

GoaliePos

OppPosition1

Energy

Learn: Q : F1 × F2 × F4 × F5 × F9 × A → R

State abstraction: ignore the irrelevant dimensions
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State abstraction as qualitative knowledge

• Traditional sources of abstraction
◦ Prior knowledge from a human
◦ Computation from a given model
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State abstraction as qualitative knowledge

• Traditional sources of abstraction
◦ Prior knowledge from a human
◦ Computation from a given model

• Automatic discovery?
◦ But discovering structure is harder than learning policies
◦ Our approach: knowledge transfer

1. Discover abstractions in easy domains

2. Transfer abstractions to hard domains

Nicholas K. Jong and Peter Stone, Learning Agents Research Group – p.4/20



Policy irrelevance: A new basis for state abstraction

When should we ignore a feature?

• Prior work
◦ ... if the states share the same abstract one-step model.
◦ Requires the true model of the environment
◦ Depends on the global abstraction
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Policy irrelevance: A new basis for state abstraction

When should we ignore a feature?

• Prior work
◦ ... if the states share the same abstract one-step model.
◦ Requires the true model of the environment
◦ Depends on the global abstraction

• Our work
◦ ... if the states share the same optimal action.
◦ Requires a learned policy for the environment
◦ Independent of abstraction at other states
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The Taxi domain

• Four features
◦ Taxi x coordinate
◦ Taxi y coordinate
◦ Current passenger location
◦ Passenger destination
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The Taxi domain

• Four features
◦ Taxi x coordinate
◦ Taxi y coordinate
◦ Current passenger location
◦ Passenger destination

• Six actions: North, South, East, West, Pick Up, Put Down
• Optimal policy:

◦ Navigate to the passenger’s location
◦ Pick up the passenger
◦ Navigate to the passenger’s destination
◦ Put down the passenger
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Policy irrelevance in the Taxi domain

Relevance of the passenger destination. . .
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Policy irrelevance with real data

Relevance of the passenger destination. . .
• When the policy is learned from data
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Policy irrelevance with real data

Relevance of the passenger destination. . .
• When the policy is learned from data
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Policy irrelevance from action-value comparisons

Q(s′, a) ≥ Q(s′, a′)

When should we ignore a set of features F at a state s?
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Policy irrelevance from action-value comparisons

∀a′ Q(s′, a) ≥ Q(s′, a′)

• Action a is better than action a′ at state s′

• Action a is optimal at state s′

When should we ignore a set of features F at a state s?
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Policy irrelevance from action-value comparisons

∀s′ ∈ [s]F ∀a′ Q(s′, a) ≥ Q(s′, a′)

• Action a is better than action a′ at state s′

• Action a is optimal at state s′

• Action a is optimal at every state s′ ∈ [s]F

When should we ignore a set of features F at a state s?

([s]F is the set of states obtained from s by varying over F )
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Policy irrelevance from action-value comparisons

∃a ∀s′ ∈ [s]F ∀a′ Q(s′, a) ≥ Q(s′, a′)

• Action a is better than action a′ at state s′

• Action a is optimal at state s′

• Action a is optimal at every state s′ ∈ [s]F

• Some action is optimal at every s′ ∈ [s]F

• Features F are policy irrelevant at s

When should we ignore a set of features F at a state s?

([s]F is the set of states obtained from s by varying over F )
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Robust action-value comparison via sampling

Q(s′, a)
?

≥ Q(s′, a′)
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Robust action-value comparison via sampling

Q(s′, a)
?

≥ Q(s′, a′)

• Compare samples of estimates, not individual estimates!
• Method 1: Statistical hypothesis testing

◦ Solve task repeatedly with a value-based RL algorithm
◦ Low computational but high sample complexity

• Method 2: Monte Carlo simulation
◦ Construct a Bayesian model from an experience trace
◦ Low sample but high computational complexity
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Partial state abstractions

Are features F relevant at state s?

↓
At what states is each set of features relevant?

• Train a binary classifier for certain sets of features
• Learn when each set of features is irrelevant
• Naive application: ignore F at classified states
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Transferring abstractions to novel domains

• Sources of error for straightforward state aggregation
◦ Statistical testing error
◦ Generalization error of the learned classifiers
◦ Novelty in the transfer domain
◦ Disruption of value-function semantics!
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Temporal abstraction

• One abstract action comprises a sequence of actions
• AKA subroutines, options, subtasks
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Temporal abstraction

• One abstract action comprises a sequence of actions
• AKA subroutines, options, subtasks
• Prior research: “Achieve this subgoal state”
• Our research: “Ignore these features”
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Temporal abstraction

• One abstract action comprises a sequence of actions
• AKA subroutines, options, subtasks
• Prior research: “Achieve this subgoal state”
• Our research: “Ignore these features”
• Safe encapsulation of state abstractions into actions
• Learn when to apply discovered state abstractions!
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Hierarchies of state and temporal abstractions

North South East West Pick Up Put Down

x−coordinate

y−coordinate

Passenger

Destination
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Hierarchies of state and temporal abstractions

North South East West Pick Up Put Down

x−coordinate

y−coordinate

Passenger
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Results in the Taxi domain

• Original 5 × 5 domain
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• Randomly generated 10 × 10 domain
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Results in the Taxi domain

• Original 5 × 5 domain
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Conclusions

• Abstraction discovery as problem reformulation
• A new basis for state abstraction: policy irrelevance

◦ Statistical testing methods
◦ Trajectory-based discovery algorithm

• Safe transfer of state abstractions to novel domains
◦ Encapsulation inside temporal abstractions
◦ Synergy of temporal and state abstractions
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Future work

• Adjusting abstraction-termination conditions
• Detection of dynamic domains
• Application to larger domains

◦ Function approximation
◦ Model-based RL algorithms

• Recursive abstraction discovery
◦ Discovery of hierarchy
◦ Dynamic state abstraction
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Future work: discovery of hierarchy

SouthNorth East West

Pick Up Put Down

PassengerRoot

y−coordinate Destination

x−coordinate Putx−coordinate

y−coordinate

Passenger

Get

Navigate

to

Red

x−coordinate

y−coordinate
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The discovery algorithm

Which feature sets F to test at what states s?
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The discovery algorithm

Which feature sets F to test at what states s?

• For given state s, test small feature sets F first and prune

s

F1 yes

F2 no

F3 yes
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The discovery algorithm

Which feature sets F to test at what states s?

• For given state s, test small feature sets F first and prune
• Sample states s from solution trajectories

s1 s2 s3 s4 s5 s6 · · ·

F1 yes

F2 no

F3 yes

F1,2 no

F1,3 no

F2,3 no

F1,2,3 no
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The discovery algorithm

Which feature sets F to test at what states s?

• For given state s, test small feature sets F first and prune
• Sample states s from solution trajectories

s1 s2 s3 s4 s5 s6 · · ·

F1 yes yes yes yes no no · · ·

F2 no no no yes no yes · · ·

F3 yes no no yes yes yes · · ·

F1,2 no no no no no no · · ·

F1,3 no no no yes no no · · ·

F2,3 no no no no no no · · ·

F1,2,3 no no no no no no · · ·
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The discovery algorithm

Which feature sets F to test at what states s?

• For given state s, test small feature sets F first and prune
• Sample states s from solution trajectories
• Construct a binary classification problem for each F

s1 s2 s3 s4 s5 s6 · · ·

F1 yes yes yes yes no no · · ·

F2 no no no yes no yes · · ·

F3 yes no no yes yes yes · · ·

F1,2 no no no no no no · · ·

F1,3 no no no yes no no · · ·

F2,3 no no no no no no · · ·

F1,2,3 no no no no no no · · ·
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Some abstractions discovered in the Taxi domain

1. Taxi’s x-coordinate:
(a) y = 1 ∧ passenger in taxi ∧ destination Red ⇒ irrelevant
(b) otherwise, relevant

2. Taxi’s y-coordinate:
(a) x = 4 ∧ passenger in taxi ⇒ irrelevant
(b) otherwise, relevant

3. Passenger’s destination:
(a) passenger in taxi ⇒ relevant
(b) otherwise, irrelevant

4. Passenger’s location and destination:
(a) (x = 1 ∧ y = 2) ∨ (x = 1 ∧ y = 1) ⇒ irrelevant
(b) otherwise, relevant
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(b) otherwise, relevant

2. Taxi’s y-coordinate:
(a) x = 4 ∧ passenger in taxi ⇒ irrelevant
(b) otherwise, relevant

3. Passenger’s destination: GOOD
(a) passenger in taxi ⇒ relevant
(b) otherwise, irrelevant
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Some abstractions discovered in the Taxi domain

1. Taxi’s x-coordinate: BAD: testing or classification error!
(a) y = 1 ∧ passenger in taxi ∧ destination Red ⇒ irrelevant
(b) otherwise, relevant

2. Taxi’s y-coordinate: BAD: testing or classification error!
(a) x = 4 ∧ passenger in taxi ⇒ irrelevant
(b) otherwise, relevant

3. Passenger’s destination: GOOD
(a) passenger in taxi ⇒ relevant
(b) otherwise, irrelevant

4. Passenger’s location and destination: BAD: task-specific!
(a) (x = 1 ∧ y = 2) ∨ (x = 1 ∧ y = 1) ⇒ irrelevant
(b) otherwise, relevant
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