CS394R Reinforcement Learning: Theory and Practice Fall 2007

Peter Stone

Department of Computer Sciences
The University of Texas at Austin

Good Afternoon Colleagues

Are there any questions?

• Defines how to learn given a task hierarchically

- Defines how to learn given a task hierarchically
- Does not address how to construct the hierarchy

- Defines how to learn given a task hierarchically
- Does not address how to construct the hierarchy
- Strives for recursive optimality

- Defines how to learn given a task hierarchically
- Does not address how to construct the hierarchy
- Strives for recursive optimality— local optimality for each subtask

- Defines how to learn given a task hierarchically
- Does not address how to construct the hierarchy
- Strives for recursive optimality— local optimality for each subtask
 - Weaker or stronger than hierarchical optimality?

- Defines how to learn given a task hierarchically
- Does not address how to construct the hierarchy
- Strives for recursive optimality— local optimality for each subtask
 - Weaker or stronger than hierarchical optimality?
- Enables reuse of subtasks

- Defines how to learn given a task hierarchically
- Does not address how to construct the hierarchy
- Strives for recursive optimality— local optimality for each subtask
 - Weaker or stronger than hierarchical optimality?
- Enables reuse of subtasks
- Enables useful state abstraction (how?)

• a means both primitive actions and subtasks (options)

- a means both primitive actions and subtasks (options)
- Higher-level subtasks are essentially policies over options
 - But subtasks are learned too
 - And the values propagate correctly

- a means both primitive actions and subtasks (options)
- Higher-level subtasks are essentially policies over options
 - But subtasks are learned too
 - And the values propagate correctly
- What does $C_i^{\pi}(s,a)$ mean?

- a means both primitive actions and subtasks (options)
- Higher-level subtasks are essentially policies over options
 - But subtasks are learned too
 - And the values propagate correctly
- What does $C_i^{\pi}(s,a)$ mean?(Dietterich slides)

- a means both primitive actions and subtasks (options)
- Higher-level subtasks are essentially policies over options
 - But subtasks are learned too
 - And the values propagate correctly
- What does $C_i^{\pi}(s,a)$ mean?(Dietterich slides)
- How does equation (2) relate to flat Q?

- a means both primitive actions and subtasks (options)
- Higher-level subtasks are essentially policies over options
 - But subtasks are learned too
 - And the values propagate correctly
- What does $C_i^{\pi}(s,a)$ mean?(Dietterich slides)
- How does equation (2) relate to flat Q?
- Theorem 2

What does MAXQ-Q buy you over flat?

- What does MAXQ-Q buy you over flat?
- What does polling buy you over flat?

- What does MAXQ-Q buy you over flat?
- What does polling buy you over flat?
- Would learning the subtasks from the bottom up help?

- What does MAXQ-Q buy you over flat?
- What does polling buy you over flat?
- Would learning the subtasks from the bottom up help?