CS394R
Reinforcement Learning: Theory and Practice
Fall 2007

Peter Stone

Department of Computer Sciences
The University of Texas at Austin
Good Afternoon Colleagues

- Are there any questions?
Logistics

- Start thinking about final projects
Logistics

- Start thinking about final projects
 - Think of a **domain**
 - Proposals week 8 **or earlier**
 - RL competition entry?
Logistics

- Start thinking about final projects
 - Think of a **domain**
 - Proposals week 8 **or earlier**
 - RL competition entry?
 - Work in pairs?
Logistics

- Start thinking about final projects
 - Think of a **domain**
 - Proposals week 8 **or earlier**
 - RL competition entry?
 - Work in pairs?

- Do your programming assignments!
Monte Carlo on week 0 task

- Episodic, undiscounted
- Equiprobable random action in start state, then prefer right
Monte Carlo on week 0 task

- Episodic, undiscounted
- Equiprobable random action in start state, then prefer right
- State values
Monte Carlo on week 0 task

- Episodic, undiscounted
- Equiprobable random action in start state, then prefer right
- State values
- Action values
Monte Carlo on week 0 task

- Episodic, undiscounted
- Equiprobable random action in start state, then prefer right
- State values
- Action values
 - Why action values preferable?
Monte Carlo on week 0 task

- Episodic, undiscounted
- Equiprobable random action in start state, then prefer right
- State values
- Action values
 - Why action values preferable?
- Relationship to n-armed bandit?
Monte Carlo on week 0 task

- Episodic, undiscounted
- Equiprobable random action in start state, then prefer right
- State values
- Action values
 - Why action values preferable?
- Relationship to n-armed bandit?
 - multiple situations (associative)
 - nonstationary
- (book slides)
Relationship to DP
Relationship to DP

- MC doesn’t need a (full) model
 - Can learn from actual or simulated experience
Relationship to DP

• MC doesn’t need a (full) model
 - Can learn from actual or simulated experience

• DP takes advantage of a full model
 - Doesn’t need any experience
Relationship to DP

• MC doesn’t need a (full) model
 – Can learn from actual or simulated experience

• DP takes advantage of a full model
 – Doesn’t need any experience

• MC expense independent of number of states
Relationship to DP

- MC doesn’t need a (full) model
 - Can learn from actual or simulated experience
- DP takes advantage of a full model
 - Doesn’t need any experience
- MC expense independent of number of states
- No bootstrapping in MC
Relationship to DP

- MC doesn’t need a (full) model
 - Can learn from actual or simulated experience
- DP takes advantage of a full model
 - Doesn’t need any experience
- MC expense independent of number of states
- No bootstrapping in MC
 - Not harmed by Markov violations
First/Every Visit

- Why is every visit trickier to analyze?
First/Every Visit

- Why is every visit trickier to analyze?
- Every visit still converges to V^π
 - Singh and Sutton ’96 paper
 - Revisited in Chapter 7 (replacing traces)
Blackjack

• Fig. 5.2 (114): Why values mainly independent of dealer showing?

• As true in Fig. 5.5? (121)

• Possible explanation for notch in usable ace policy?

• Why not just use DP?
Control

- Q more useful than V without a model
- But to get it need to explore
- Exploring starts vs. stochastic policies
 - Does ES converge?
Control

• Q more useful than V without a model

• But to get it need to explore

• Exploring starts vs. stochastic policies
 – Does ES converge? Tsitsiklis paper:
 We settle the above mentioned open problem, for
 the case of a discounted cost criterion, under the
 assumption that every state-action pair is used to
 initialize the observed trajectories with the same
 frequency.
Control

- Q more useful than V without a model
- But to get it need to explore
- Exploring starts vs. stochastic policies
 - Does ES converge? Tsitsiklis paper:
 We settle the above mentioned open problem, for the case of a discounted cost criterion, under the assumption that every state-action pair is used to initialize the observed trajectories with the same frequency.
 - Epsilon-soft vs. epsilon-greedy (122)
 - Why consider off-policy methods?
Learning off policy

- Off policy equations (5.3 and next 2: 125)
- Change week 0 policy from equiprobable in start state to 50/25/25
Learning off policy

- Off policy equations (5.3 and next 2: 125)
- Change week 0 policy from equiprobable in start state to 50/25/25
- Why only learn from tail in Fig. 5.7?
Learning off policy

- Off policy equations (5.3 and next 2: 125)
- Change week 0 policy from equiprobable in start state to 50/25/25
- Why only learn from tail in Fig. 5.7?