Embedded Agent for Arm Control

PROGRAMMING ASSIGNMENT

CS394R Fall 2016

1 Motivation

Embedded implementations of reinforcement learning agents will be key to en-
abling expressive interactions with everyday objects. These agents, which may
not always have access to off-board computing resources, must learn from real-
world interactions using limited memory and clock cycles. To explore the is-
sues facing embedded agents, I built a robot and solved a simple control prob-
lem using reinforcement learning.

2 Introduction

2.1 Learning Platform

I based the platform on the Atmel ATmega328p, a cheap and widely available
8-bit microcontroller. It has 32kb of program memory, 2kb of SRAM and op-
erates at 16MHz. It is used by popular hobbyist electronics boards like the
Arduino Uno, and for this project, I used an Arduino Pro Mini. It does not
have a floating point unit, though the Arduino runtime provides a software
implementation that mimics 32-bit IEEE float.

In order to provide a reasonably complex task for the agent, I decided to build
a two degrees of freedom arm with an LED actuator. The arm’s joints are SG90
micro-servos, each capable of 155° of rotation. The base joint is fixed to a sur-
face, and the elbow joint is mounted to the base with a pair of three-inch dowel
rods. The elbow joint controls another rod which is tipped with an LED. The
motors are connected such that the middle of their rotation ranges align.

Figure 1: Top: The learning platform. The middle of the joints rotation range
is the configuration that has both joints pointing north. Two photocells are
pictured, but only the left one was used. Black tape marks the unused position
for a third. Bottom: The arm in detail. Note that the LED has its sides covered
to reduce the width of its light cone.

2.2 Problem

The agent must point the LED at a photocell fixed to the surface in as few
movements as possible, activating the LED as little as possible. It begins from
a random initial configuration. The episode ends when the photocell reads
above a defined threshold.

50 if photocell activated
r(s,a,s') ={ —2 if LED activated and photocell not activated
—1 otherwise

2.3 Learning Approaches
2.3.1 Tabular?

The servo control library used for this project allows motor targets to be set
with single-degree precision, so a single joint can have integer positions in
[0°,155°]. For each configuration, the LED can be either on or off, so there are a
total of 48050 states. At a given time step, the agent may choose to keep a joint
fixed, move it left, or move it right and it can choose to activate or deactivate
the LED. Assuming we restrict the agent to movements of unit magnitude, this
means there are eighteen actions.

A state-action value table based on this representation, assuming 4 byte floats,
would occupy more than 4 megabytes of memory. Due to the spread of the
light of the LED, it may be feasible to reduce the fidelity of the joint state repre-
sentation and still achieve good performance, and because the optimal policy
will likely always elect to move a joint, we may be able to remove actions which
do not move a joint with little adverse effect. Even then, the microcontroller
could only theoretically fit 10% of all state action pairs (less without careful op-
timization, as the stack needs to live in memory as well). A tabular approach
is not feasible due to the system’s memory constraints.

2.3.2 Function Approximation

Approximation allows tight control of the amount of memory being used to
represent the value function. Because of the complex update step however,
only at most half of the memory can be used for storing weights. Even then, the
update step must be implemented carefully to control the stack size. Consider
the episodic semi-gradient one-step Sarsa update:

0111 =0 +u [Rtﬂ +Y4(St1, A1 6t) — 4(St, At, 9t)} AG(St, A, 0:) (1)

And in the linear case:

011 =0 +a|Rii1 + 70, pri1— 6/ pr| (2)

It is possible to implement the update using only n additional space, where # is
the number of weights, but this is easy to do incorrectly. If the action selection
step is placed after the memory allocation, the stack will consume 21 memory;
maximizing the value function over possible next states requires an additional
n stack space.

Algorithm 1 Memory-conscious Episodic Semi-gradient One-step Sarsa

1: procedure UPDATE(S;, At, St+1, 6)
2: Aty < choose action from S; 1 according to policy

3: Allocate x to be a vector the size of 0, and floats r and a

4: v <— T(St, Ay, St+1)

5: x < ¢(Se11, Ari1) > store ¢y 1
6: a+0"x > calculate v(S;41, A¢41) so we can discard ¢ 1
7: x < ¢(St, Ap) > store ¢
8: a+r+y0—0"x > a is now the bracketed term in eq. 1
9. x < (aa)x > is now the weight update

10: 0+ 0+x
11: end procedure

An approximation approach implemented on the microcontroller can use at
most 1kb of RAM, or 250 features (less the incidental stack space required dur-
ing the update step). It was not clear that this would be sufficient for good
performance, but it was the only feasible approach. I implemented a semi-
gradient one-step Sarsa agent using a linear function approximator.

I have not dwelt on time efficiency since, even with software floating point
operations, 16MHz permits a fair amount of computation. For this project, I
was satisfied as long as actions could be selected more quickly than the servos
could execute them. Meeting this deadline, which was about 100ms, or 1.6 mil-
lion cycles, was not an issue, even while the device was also streaming logging
information over serial. If time performance requirements were tighter, special
attention would need to be paid to the action selection process, which involves
|A| value function queries, each costing n multiplications

3 Experimental Setup

The agent learns for 50 episodes using « = 0.2, v = 0.99, following an e-greedy
policy with € = 0.1. Then, the agent operates in an evaluation mode for 50
episodes with « = € = 0.0. During this period, episodes are limited to 200

steps in case the agent executes a policy that never reaches the goal. A small
delay is used between action execution and sensing to allow the arm to settle.
The photocell threshold is calibrated before every session to prevent spurious
activations.

3.1 Features

I used a simple discretization of the state space. The range of each joint was
divided into 8 20° sections. The two sets of section features along with a binary
feature for the LED state were then gridded, resulting in 128 mutually exclusive
binary features.

Because of the large number of actions, it was not feasible to maintain sepa-
rate approximators per action, so I used three action features: two character-
izing the direction of each joint’s movement, taking values in {0, 1, —1}, and
one binary feature describing whether or not the LED is activated by the ac-
tion. Clearly, three features is insufficient to encode the differences in value for
all actions across the state space, however there was not enough memory to
grid these features with the state features. The total number of weights in the
representation is still below the theoretical maximum number of weights for
the microcontroller, so additional features could have been added with more
time.

3.2 Actions

At each time step, the agent selects one entry from each column to form its
action. If the LED is already on and the agent chooses an action that includes
turning the LED on, the light remains activated for the next timestep. The
behavior is symmetric in the LED off case.

Joint 1 Joint 2 LED

Move left Move left Turn on
Move right Move right Turn off
No movement No movement

To better support the state representation, I set the agent’s movement incre-
ment to 20°. This ensures that the state resulting from any movement has a dif-
ferent feature vector than the previous state. This change does limit the gran-
ularity of the agent’s movements, but without it, the agent must randomly es-
cape the 20° sections by repeatedly making smaller movements, which makes
learning take much longer.

4 Results

Mean reward per episode, p=0.10
150

100 S T e JETIR

50 L Tt

Reward
.
a1
o

200 A e

Episodes

Figure 2: The agent’s performance. The first 50 episodes are learning time, the
rest are evaluations. Due to the time expense of collecting data from the robot,
I could only run ten trials. Still, within reasonable confidences, the agent’s
evaluation averages a reward of 44, demonstrating that it was able to quickly
point the LED towards the photocell from arbitrary start positions.

4.1 Discussion

The agent learns and generalizes a fairly good policy within its first fifty steps.
The evaluation period demonstrates that the learned policy performs well from
arbitrary start positions.

Even though it points the LED at the photocell consistently, the agent does not
learn the LED reward dynamics, opting to simply leave the light on at all times.
This is not unexpected, since it lacks features that describe the interaction of the
joint position with the value of actions that turn the LED on. The weight asso-
ciated with the LED activation action-feature is forced to represent the value of
LED actions from any state. Averaged across the entire state space, turning the
light on has a higher value than turning it off, so it always leaves it on. Efficient

LED activation is not as important as joint movement, so it seems reasonable
to prioritize detailed state-space representation over features that would better
capture the use of the light.

5 Conclusions

I have demonstrated that it is possible to implement an embedded agent that
achieves good performance on an arm control task, even with extraordinary
memory constraints. Further work could investigate more sophisticated fea-
tures, or explore the performance and memory characteristics of policy gradi-
ent methods in the same domain.

6 Appendix A: Images

Figure 3: A 30 second exposure taken early in the agent’s learning.

Figure 4: Detail of the breadboard. A piezo buzzer beeps whenever an episode
ends. Voltage dividers for the photocells are visible. The board hanging off the
side provides voltage regulation. At the top left, two capacitor banks smooth
the high draw that occurs when the servos start.

Figure 5: The agent illuminates the photocell.

7 Appendix B: Bill of Materials

Component

Quantity Unit Price ($)

Note

Arduino Pro Mini, 5v
Breadboard
SG90 micro-servo

Dowel rods

1500uF capacitor

5v 2.5A power supply
330Q) resistor

LED

Photocell

Rubber bands

Assorted jumpers
Adhesives, project surface

1 3.00
1 4.00
2 3.00

2.00
1.00
8.00
0.01
0.10
0.10
0.10
3.00
4.00

W= = NW

Any servo with sufficient range
of motion.

If variable supply unavailable.

The brighter the better.

