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A Game

P{head$ = p1 P{head$ = p> P{head$ = ps

B pi, p2, andps areunknown.
B You are given a total of 20 tosses.
B Maximise the total number of heads!

Shivaram Kalyanakrishnan (2014) Multi-armed Bandits



To Explore or to Exploit?

B On-line advertising: Template optimisation

CARS

,

***** 4 Cars

:

********* CARS

:

Shivaram Kalyanakrishnan (2014) Multi-armed Bandits 4/21



To Explore or to Exploit?

B On-line advertising: Template optimisation

CARS

,

***** 4 Cars

!

********* CARS

!

B Clinical trials (Robbins, 1952)

Shivaram Kalyanakrishnan (2014) Multi-armed Bandits 4/21



To Explore or to Exploit?

B On-line advertising: Template optimisation

CARS

,

***** 4 Cars

!

********* CARS

!

B Clinical trials (Robbins, 1952)
B Packet routing in communication networks (Altman, 2002)

Shivaram Kalyanakrishnan (2014) Multi-armed Bandits

4/21



To Explore or to Exploit?

B On-line advertising: Template optimisation

CARS

,

***** 4 Cars

!

********* CARS

!

B Clinical trials (Robbins, 1952)
B Packet routing in communication networks (Altman, 2002)
B Game playing and reinforcement learning (Kocsis and Sz&pe2006)
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Overview

1. Problem definition

2. Two natural algorithms
3. Lower bound

4. Two improved algorithms
5. Conclusion
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Stochastic Multi-armed Bandits

<

B narms each associated with a Bernoulli distribution.
B Arm ahas mearms..
B Highest mean ip*.
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One-armed Bandits
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B The cumulative regretver a runisy__,(p* —r).
B The expected cumulative regmtthe algorithm (or simply “regret”) is

T

Rr=E [Z(p* - rt)} =Tp" — ZE[rt].

t=1

We desire an algorithm that minimises regret! ‘
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e-Greedy Strategies

B G1 (parametek € [0, 1] controls the amount of exploration)
- If t < €T, sample an arm uniformly at random.
- Att = |€T|, identify &, an arm with the highest empirical mean.
- If t > €T, sampleal®.,
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Softmax Exploration
B Softmax(Sutton and Barto, 1998; see Chapter 2.3)
- Attime t, Sample arna with probability proportional tmxp(ﬁ).
B P, the empirical mean of arma.
B « atunable parameter that controls exploration.
B One could “anneal” at rates different fro%n
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- Attime t, Sample arna with probability proportional tmxp(@).
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A Lower Bound on Regret

Paraphrasing Lai and Robbins (1985; see Theorem 2).

Let A be an algorithm such that for evepgndit instancé and for every
a> 0, asT — oo:
Rr(A, 1) = o(T?).
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Rr(A,1) = o(T?).

Then, for evenybandit instancé, asT — oo:

*(1) — pa(l
RTM,.)Z( 5 %) oa(T).

a:pa(l)#p* (!
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Upper Confidence Bounds
B UCB (Auer et al., 2002a)

. ) 2In(t
- Attime t, for every armg, defineuct, = p, + 7’};—)
- Uf, the number of timea has been sampled at time
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B Achieves regretoO(Za patp* p* o log(T )): optimal dependence oh

B KL-UCB (Garivier and Cappé, 2011) yields regce(za Pt KL o p* Iog( )),
matching the lower bound from Lai and Robbins (1985).

Regret on instanch (with T = 100, 000)-UCB:1168+ 16; KL-UCB: 738+ 18. ‘
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Thompson Sampling
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Shivaram Kalyanakrishnan (2014) Multi-armed Bandits 16/21



Thompson Sampling
B Thompson(Thompson, 1933)

- Attime t, let arma haves,, successes (ones) afjdfailures (zeroes).

- Beta(s, + 1, f! + 1) represents a “belief” about the true mean of @m
Sl = (5+1)(fat)
=g vanance = (S +1+2)% (4 +14+3)

- Mean =

1 -

Shivaram Kalyanakrishnan (2014) Multi-armed Bandits

16/21



Thompson Sampling
B Thompson(Thompson, 1933)

- Attime t, let arma haves,, successes (ones) afjdfailures (zeroes).

- Beta(s}, + 1, f + 1) represents a “belief” about the true mean of @m
Sl = (5+1)(fat)
W, variance = (%+f‘+2) (%+f;+3)

- Mean =

1 -

0R7

- Computational stegFor every arma, draw a samplel, ~ Beta(s, + 1, f + 1).
- Sampling stepSample an arra for which x;, is maximal

Shivaram Kalyanakrishnan (2014) Multi-armed Bandits

16/21



Thompson Sampling
B Thompson(Thompson, 1933)

- Attime t, let arma haves,, successes (ones) afjdfailures (zeroes).

- Beta(s}, + 1, f + 1) represents a “belief” about the true mean of @m
Sl = (5+1)(fat)
W, variance = (%+f‘+2) (%+f;+3)

- Mean =

1 -

0R7

- Computational stegFor every arma, draw a samplel, ~ Beta(s, + 1, f + 1).
- Sampling stepSample an arra for which x;, is maximal

Shivaram Kalyanakrishnan (2014) Multi-armed Bandits

16/21



Thompson Sampling

B Thompson(Thompson, 1933)
- Attime t, let arma haves,, successes (ones) afjdfailures (zeroes).

- Beta(s}, + 1, f + 1) represents a “belief” about the true mean of @m
(s+1)(fa+1)

- Mean = Sta+ ) ; variance S e N T e
ST (SH+2)*(&+11+3) |

1

0

.
- Computational stegFor every arma, draw a samplel, ~ Beta(s, + 1, f + 1).
- Sampling stepSample an arra for which x;, is maximal

B Achievesoptimal regre{Kaufmann et al., 2012); isxcellent in practice
(Chapelle and Li, 2011).

Shivaram Kalyanakrishnan (2014) Multi-armed Bandits 16/21



Thompson Sampling

B Thompson(Thompson, 1933)
- Attime t, let arma haves,, successes (ones) afjdfailures (zeroes).

- Beta(s}, + 1, f + 1) represents a “belief” about the true mean of @m
(s+1)(fa+1)

- Mean = Sta ) ; variance S e T T O
ST (S ++2)* (s +11+3)

1

0R7

- Computational stegFor every arma, draw a samplel, ~ Beta(s, + 1, f + 1).
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B Achievesoptimal regre{Kaufmann et al., 2012); isxcellent in practice
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‘ On instancé; (with T = 100, 000), regret ig63+ 18.
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Consolidated Results on Instange
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‘ Principle: “Optimism in the face of uncertainty.” ‘
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Discussion

B Challenges and extensions
- Set of arms can change over time.
- On-line updates not feasible; batch updating needed.
- Rewards are delayed.
- Arms might bedependent; “context” can be modeled (Li et al., 2010).

- Nonstationary rewards; adversarial modeling possibles(Aat al., 2002b).
B Summary

- Adaptive sampling of options, based on stochastic feedtiaakaximise total reward.
- Well-studied problem with long history.
- Thompson Sampling is an essentially optimal algorithm.

- Modeling assumptions typically violated only slightly irggtice.
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