Leading Best-Response Strategies in Repeated Games

Peter Stone
Michael L. Littman

AT&T Labs-Research

{mlittman,pstone}@research.att.com
Motivation: Auctions

FCC spectrum auction

- Bidder A winning license 37 for $1M.
- Bidders A and B competing for license 63.
- Simultaneously, Bidder B bids:
 - license 37: $1.1M ← threat!
 - license 63: $13,000,037

First steps toward agents that can reason this way: Negotiation without explicit communication!
Outline

- iterated matrix game model
- standard approaches: game theory, best response
- high-level strategies: leaders
- comparisons in four archetypical games
Matrix Game Model

Simple, yet instructive model for 2-player interactions.

\[M_1 = \begin{bmatrix} a & b & c \\ d & e & f \end{bmatrix}, \quad M_2 = \begin{bmatrix} u & v & w \\ x & y & z \end{bmatrix} \]

Player 1 chooses a row, player 2 chooses a column.
Player \(i \) payoff determined by entry in \(M_i \).

Iterated matrix game, repeat over unbounded stages.
Policy Types

Generally: action choice conditioned on full history.
Usually: finite amount of history.

Deterministic: choose the same action in every stage

Memoryless (0): fixed probability distribution

Bigram (1): condition action on previous action choice

Repeated interaction: influence future behavior (threats).
Game theory literature: “folk theorems”.
Learning Best Response

Best response: maximize reward vs. observed

Q-learning (Watkins and Dayan 92) can be used for games.

ϵ-greedy policy: In state x, choose

- a random action with probability ϵ
- $\arg\max_i Q(x, i)$ otherwise.

Q-learning converges to best response vs. fixed opponent
Learner’s State

Two choices for states (“history”):

- Q_0: memoryless (1 state)
- Q_1: bigram (learner’s previous action choice).

Detects punished action by reduced payoff in next stage.
Leader Strategies

If your opponent learns, stubbornness and threats help. Leader: Assume opponent is learning how to respond.

We describe general strategies that can issue threats to lead learners to cooperate.

- Bully
- Godfather
Bully

Bully is a deterministic, memoryless policy:

\[
M_1 = \begin{bmatrix} 1 & 2 & 6 \\ 5 & 2 & 9 \end{bmatrix}, \quad M_2 = \begin{bmatrix} 2 & 1 & 3 \\ 1 & 5 & 2 \end{bmatrix}
\]

\(M_1\) : leader’s payoff matrix, \(M_2\) follower’s payoff matrix.

Oligopoly lit.: “Stackelberg leader” (Fudenberg and Levine 98)
Godfather

Finite-state: “makes its opponent an offer it can’t refuse.”

\[M_1 = \begin{bmatrix} 1 & 2 & 6 \\ 5 & 2 & 9 \end{bmatrix}, \quad M_2 = \begin{bmatrix} 4 & 1 & 3 \\ 1 & 5 & 2 \end{bmatrix} \]

- Security level \((2, \sim 2.7)\). Dominating cell \((6, 3)\).
- Lead with cell action.
- Punish uncooperativeness with security level.

Threat: “Play your action from the cell, or I’ll force you to get no more than your security level no matter what.”

Generalization of tit-for-tat (Axelrod 84).
Experiments

Bully, Godfather, Q_0 and Q_1 vs. Q_0 & Q_1 in several games

Parameters:

- $\varepsilon = 0.1$
- 30,000 stages of learning
- average payoff over the final 5,000 stages
- mean and standard deviation over 100 experiments
Test Games

We used games with a common structure:

- 2 × 2 bimatrix games ("cooperate", "defect")
- symmetric payoffs

\[
M_1 = \begin{bmatrix} 3 & y \\ x & 1 \end{bmatrix}, \quad M_2 = \begin{bmatrix} 3 & x \\ y & 1 \end{bmatrix}
\]

Games:

- deadlock
- assurance
- prisoner’s dilemma
- chicken
Deadlock: An Obvious Choice

Always better off cooperating:

\[M_1 = \begin{bmatrix} 3 & 2 \\ 0 & 1 \end{bmatrix}, \quad M_2 = \begin{bmatrix} 3 & 0 \\ 2 & 1 \end{bmatrix} \]

Bully cooperates. Godfather cooperates, defect as threat.

\[Q_0 \quad Q_1 \quad \text{Bully} \quad \text{GF} \]

\[
\begin{align*}
Q_0 & : 2.8 \quad 2.8 \quad 3.0 \quad 2.8 \\
Q_1 & : 2.8 \quad 2.8 \quad 3.0 \quad 2.8
\end{align*}
\]
Assurance: Suboptimal Preference

More important to match the other than to cooperate:

\[M_1 = \begin{bmatrix} 3 & 0 \\ 2 & 1 \end{bmatrix}, \quad M_2 = \begin{bmatrix} 3 & 2 \\ 0 & 1 \end{bmatrix} \]

Q-learners coordinate with no particular bias.

\begin{align*}
Q_0 & \quad Q_1 & \quad \text{Bully} & \quad \text{GF} \\
Q_0 & \quad 1.4* & \quad 1.5* & \quad 2.8 & \quad 1.4* \\
Q_1 & \quad 1.9* & \quad 1.7* & \quad 2.8 & \quad 2.8
\end{align*}

(Stars mark numbers with high variance, more than 0.15).
PD: Incentive to Defect

Better off defecting:

\[M_1 = \begin{bmatrix} 3 & 0 \\ 5 & 1 \end{bmatrix}, \quad M_2 = \begin{bmatrix} 3 & 5 \\ 0 & 1 \end{bmatrix} \]

Bully defects, Godfather is tit-for-tat.

\[
\begin{array}{cccc}
Q_0 & Q_1 & \text{Bully} & \text{GF} \\
Q_0 & 1.2^* & 1.2^* & 1.2 & 1.4^* \\
Q_1 & 1.2 & 1.2 & 1.2 & 2.9 \\
\end{array}
\]

Godfather lures \(Q_0 \) to cooperate for short periods of time.
Chicken: Incentive to Exploit

Each player is better off choosing the opposite:

\[
M_1 = \begin{bmatrix}
3 & 1.5 \\
3.5 & 1 \\
\end{bmatrix},
\quad M_2 = \begin{bmatrix}
3 & 3.5 \\
1.5 & 1 \\
\end{bmatrix}
\]

Feign stupidity! Learning problem is meta-chicken.

Godfather+ Q_1 reaches mutual cooperation

\[
\begin{array}{c|cccc}
Q_0 & Q_1 & \text{Bully} & \text{GF} \\
\hline
Q_0 & 2.5^* & 2.5^* & 3.4 & 2.8 \\
Q_1 & 2.4^* & 2.9 & 3.4 & 2.9 \\
\end{array}
\]

Bully overpowers others, but loses to self (unlike GF).
Conclusions

Illustrates the importance of leading best-response.

- $Q_0 + Q_0$ suboptimal in 3 of 4 games
- Godfather stabilizes mutually beneficial payoff
- Q_1 responds consistently to Godfather’s threats.

We conclude that

- important to go beyond best response
- general strategies do better via tacit negotiation
Future Strategies

Apply these ideas in more complex multistage games. Example: FCC spectrum auction simulator (Csirik et al. 01).

Agents need “leader”-like and “follower”-like qualities.

First step towards agents engaging in tacit negotiation
Extended Godfather Theorem

For any iterated matrix game there is either:

- a Nash where both players receive an average payoff that ties or beats security level, or
- a deterministic pair of strategies stable by threats that beats security level ("folk theorem"), or
- a pair of pairs that can be visited in a fixed sequence stabilized by threats that beat security levels

In symmetric games, sequence is a simple alternation.