Good Morning Colleagues
Good Morning Colleagues

- Are there any questions?
Logistics

- Reading responses
Logistics

- Reading responses
- Next week’s readings
Logistics

● Reading responses
● Next week’s readings
● The math is important
Logistics

- Reading responses
- Next week’s readings
- The math is important
- Use piazza
Chapter 3

• Defines the problem
Chapter 3

- Defines the problem
- Introduces some important notation and concepts.
Chapter 3

• Defines the problem

• Introduces some important notation and concepts.
 – Returns
 – Markov property
 – State/action value functions
 – Bellman equations
Chapter 3

- Defines the problem

- Introduces some important notation and concepts.
 - Returns
 - Markov property
 - State/action value functions
 - Bellman equations
 - Get comfortable with them!
Chapter 3

- Defines the problem

- Introduces some important notation and concepts.
 - Returns
 - Markov property
 - State/action value functions
 - Bellman equations
 - Get comfortable with them!
 - $q_\pi(s, a) =$
Chapter 3

- Defines the problem
- Introduces some important notation and concepts.
 - Returns
 - Markov property
 - State/action value functions
 - Bellman equations
 - Get comfortable with them!
 - \(q_\pi(s, a) = \)
 - Backup diagrams (p. 62)
Chapter 3

- Defines the problem
- Introduces some important notation and concepts.
 - Returns
 - Markov property
 - State/action value functions
 - Bellman equations
 - Get comfortable with them!
 - $q_\pi(s, a) =$
 - Backup diagrams (p. 62)
- Solution methods start in Chapter 4
Chapter 3

- Defines the problem
- Introduces some important notation and concepts.
 - Returns
 - Markov property
 - State/action value functions
 - Bellman equations
 - Get comfortable with them!
 - $q_\pi(s, a) =$
 - Backup diagrams (p. 62)

- Solution methods start in Chapter 4
 - What does it mean to solve an RL problem?
Formulating the RL problem

- Art more than science
- States, actions, rewards
- Rewards: no hints on how to solve the problem
Formulating the RL problem

- Art more than science
- States, actions, rewards
- Rewards: no hints on how to solve the problem
- Discounted vs. non-discounted
Formulating the RL problem

- Art more than science
- States, actions, rewards
- Rewards: no hints on how to solve the problem
- Discounted vs. non-discounted
- Episodic vs. continuing
Value functions

- Consider the week 0 environment
Value functions

- Consider the week 0 environment
- For some s, what is $V(s)$?
Value functions

- Consider the week 0 environment
- For some s, what is $V(s)$?
- OK - consider the policy we ended with
- Now, for some s, what is $V(s)$?
Value functions

- Consider the week 0 environment
- For some s, what is $V(s)$?
- OK - consider the policy we ended with
- Now, for some s, what is $V(s)$?
- Construct V in undiscounted, episodic case
Value functions

- Consider the week 0 environment
- For some s, what is $V(s)$?
- OK - consider the policy we ended with
- Now, for some s, what is $V(s)$?
- Construct V in undiscounted, episodic case
- Construct Q in undiscounted, episodic case
Value functions

• Consider the week 0 environment
• For some s, what is $V(s)$?
• OK - consider the policy we ended with
• Now, for some s, what is $V(s)$?
• Construct V in undiscounted, episodic case
• Construct Q in undiscounted, episodic case
• What if it’s discounted?
Value functions

- Consider the week 0 environment
- For some s, what is $V(s)$?
- OK - consider the policy we ended with
- Now, for some s, what is $V(s)$?
- Construct V in undiscounted, episodic case
- Construct Q in undiscounted, episodic case
- What if it’s discounted?
- What if it’s continuing?
Value functions

- Consider the week 0 environment
- For some s, what is $V(s)$?
- OK - consider the policy we ended with
- Now, for some s, what is $V(s)$?
- Construct V in undiscounted, episodic case
- Construct Q in undiscounted, episodic case
- What if it’s discounted?
- What if it’s continuing?
- Continuing tasks without discounting?

Peter Stone
Value functions

- Consider the week 0 environment
- For some s, what is $V(s)$?
- OK - consider the policy we ended with
- Now, for some s, what is $V(s)$?
- Construct V in undiscounted, episodic case
- Construct Q in undiscounted, episodic case
- What if it’s discounted?
- What if it’s continuing?
- Continuing tasks without discounting?
- Exercises 3.9, 3.10, 3.16
Markov property

- What is it?
Markov property

- What is it?
- Does it hold in the real world?
Markov property

• What is it?

• Does it hold in the real world?
 – Are any systems "fundamentally" non-Markovian?
Markov property

- What is it?

- Does it hold in the real world?
 - Are any systems "fundamentally" non-Markovian?
 - What if there’s a time horizon?
Markov property

- What is it?

- Does it hold in the real world?
 - Are any systems "fundamentally" non-Markovian?
 - What if there’s a time horizon?

- It’s an ideal
 - Will allow us to prove properties of algorithms
Markov property

- What is it?

- Does it hold in the real world?
 - Are any systems "fundamentally" non-Markovian?
 - What if there’s a time horizon?

- It’s an ideal
 - Will allow us to prove properties of algorithms
 - Algorithms may still work when not provably correct
Markov property

- What is it?

- Does it hold in the real world?
 - Are any systems "fundamentally" non-Markovian?
 - What if there’s a time horizon?

- It’s an ideal
 - Will allow us to prove properties of algorithms
 - Algorithms may still work when not provably correct
 - Could you compensate? Do algorithms change?
Markov property

• What is it?

• Does it hold in the real world?
 – Are any systems "fundamentally" non-Markovian?
 – What if there’s a time horizon?

• It’s an ideal
 – Will allow us to prove properties of algorithms
 – Algorithms may still work when not provably correct
 – Could you compensate? Do algorithms change?
 – If not, you may want different algorithms (Monte Carlo)
Markov property

- What is it?

- Does it hold in the real world?
 - Are any systems "fundamentally" non-Markovian?
 - What if there’s a time horizon?

- It’s an ideal
 - Will allow us to prove properties of algorithms
 - Algorithms may still work when not provably correct
 - Could you compensate? Do algorithms change?
 - If not, you may want different algorithms (Monte Carlo)

- Exercise 3.6 (broken vision system)
Chapter 4

- Solution methods given a model
Chapter 4

• Solution methods given a model
 – So no exploration vs. exploitation
• Solution methods \textit{given a model}

 – So no exploration vs. exploitation
Policy Evaluation

- \(V^\pi \) exists and is unique if \(\gamma < 1 \) or termination guaranteed for all states under policy \(\pi \).
Policy Evaluation

- V^π exists and is unique if $\gamma < 1$ or termination guaranteed for all states under policy π.

- Policy evaluation converges under the same conditions.
Policy Evaluation

- V^π exists and is unique if $\gamma < 1$ or termination guaranteed for all states under policy π.

- Policy evaluation converges under the same conditions

- Policy evaluation on the week 0 problem
 - undiscounted, episodic
Policy Evaluation

- V^π exists and is unique if $\gamma < 1$ or termination guaranteed for all states under policy π.

- Policy evaluation converges under the same conditions.

- Policy evaluation on the week 0 problem
 - undiscounted, episodic
 - Are the conditions met?
Policy Evaluation

- V^π exists and is unique if $\gamma < 1$ or termination guaranteed for all states under policy π.

- Policy evaluation converges under the same conditions

- Policy evaluation on the week 0 problem
 - undiscounted, episodic
 - Are the conditions met?

- Exercises 4.1, 4.2
Policy Improvement

- Policy improvement theorem:

\[
\forall s, q_\pi(s, \pi'(s)) \geq v_\pi(s) \Rightarrow \forall s, v_{\pi'}(s) \geq v_\pi(s)
\]
Policy Improvement

• Policy improvement theorem:
 \[\forall s, q_\pi(s, \pi'(s)) \geq v_\pi(s) \Rightarrow \forall s, v_{\pi'}(s) \geq v_\pi(s) \]

• Polynomial time convergence (in number of states and actions) even though \(m^n \) policies.
 - Ignoring effect of \(\gamma \) and bits to represent rewards/transitions
Policy Improvement

- Policy improvement theorem:
 \[\forall s, q_\pi(s, \pi'(s)) \geq v_\pi(s) \Rightarrow \forall s, v_\pi'(s) \geq v_\pi(s) \]

- Polynomial time convergence (in number of states and actions) even though \(m^n \) policies.
 - Ignoring effect of \(\gamma \) and bits to represent rewards/transitions
Value Iteration on Week 0 problem

- Show the new policy at each step
 - Not actually to compute policy
Value Iteration on Week 0 problem

- Show the new policy at each step
 - Not actually to compute policy
 - Break policy ties with equiprobable actions
Value Iteration on Week 0 problem

- Show the new policy at each step
 - Not actually to compute policy
 - Break policy ties with equiprobable actions
 - No stochastic transitions
Value Iteration on Week 0 problem

- Show the new policy at each step
 - Not actually to compute policy
 - Break policy ties with equiprobable actions
 - No stochastic transitions

- How would policy iteration proceed in comparison?
 - More or fewer policy updates?
Value Iteration on Week 0 problem

- Show the new policy at each step
 - Not actually to compute policy
 - Break policy ties with equiprobable actions
 - No stochastic transitions

- How would policy iteration proceed in comparison?
 - More or fewer policy updates?
 - True in general?
Chapter 4 Summary

• Chapter 4 treats **bootstrapping** with a model
Chapter 4 Summary

- Chapter 4 treats **bootstrapping** with a model
 - Next: no model and no bootstrapping
Chapter 4 Summary

• Chapter 4 treats **bootstrapping** with a model
 – Next: no model and no bootstrapping
 – Then: no model, but bootstrapping