CS 394R
Reinforcement Learning: Theory and Practice

Sanmit Narvekar

Department of Computer Science
University of Texas at Austin
Good Morning Colleagues

• Are there any questions?
Logistics

• First 3 assignments due next Friday by midnight

• Project proposals due next Thursday 9:30am
Outline

• Get a feel for how to approach a complex RL problem

• Keepaway Domain

• Group Activity!

• One approach and extensions
Keepaway: A Subtask of 2D Simulated Soccer

• Play in a **small area**
• **Keepers** try to keep the ball
• **Takers** try to get the ball

• **Episode:**
 • Players and ball reset randomly
 • Ball starts near a keeper
 • Ends when taker gets the ball or ball goes out

• Performance measure: **average possession duration**
Keepaway

• **Sensations**
 • Your position
 • Teammate and opponent positions
 • Ball position
 • Landmark positions

• **Raw Actions**
 • Move(x, y)
 • Kick(x, y, power)

• **Higher level** actions/skills
 • HoldBall, PassBall(k), GoToBall, GetOpen
Some questions to think about...

- **State/Action** space?
- **Reward** function?
- Function **approximation**?

- MDP formulation
 - Each agent learns separately?
 - Each agent shares a set of learned skills?

- What will be **learned**, and what will be **hand-coded**?
 - If it’s a mix, what will the final policy look like?

- Keep the learning problem **tractable**!
One approach...

• **Reinforcement Learning for RoboCup-Soccer Keepaway**

Extension: Transfer Learning