
Eligibility Traces

Unifying Monte Carlo and TD

key algorithms: TD(λ), Sarsa(λ), Q(λ)

width
of backup

height
(depth)

of backup

Temporal-
difference

learning

Dynamic
programming

Monte
Carlo

...

Exhaustive
search

2

Unified View

3

N-step TD Prediction

Idea: Look farther into the future when you do TD
backup (1, 2, 3, …, n steps)

7.1. N -STEP TD PREDICTION 155

TD (1-step) 2-step 3-step n-step Monte Carlo

Figure 7.1: The spectrum ranging from the one-step backups of simple TD
methods to the up-until-termination backups of Monte Carlo methods. In
between are the n-step backups, based on n steps of real rewards and the
estimated value of the nth next state, all appropriately discounted.

return, in one-step backups the target is the first reward plus the discounted
estimated value of the next state:

G

(1)
t

= R

t+1 + �V (S
t+1).

This makes sense because �V (S
t+1) takes the place of the remaining terms

�R

t+2+�

2
R

t+3+ · · ·+�

T�t�1
R

T

, as we discussed in the previous chapter. Our
point now is that this idea makes just as much sense after two steps as it does
after one. The two-step target is

G

(2)
t

= R

t+1 + �R

t+2 + �

2
V (S

t+2),

where now �

2
V (S

t+2) takes the place of the terms �

2
R

t+3 + �

3
R

t+4 + · · · +
�

T�t�1
R

T

. In general, the n-step target is

G

(n)
t

= R

t+1 + �R

t+2 + �

2 + · · · + �

n�1
R

t+n

+ �

n

V (S
t+n

). (7.1)

This quantity is sometimes called the “corrected n-step truncated return”
because it is a return truncated after n steps and then approximately corrected
for the truncation by adding the estimated value of the nth next state. That
terminology is descriptive but a bit long. We instead refer to G

(n)
t

simply as
the n-step return at time t.

Monte Carlo:

TD:
Use Vt to estimate remaining return

n-step TD:
2 step return:

n-step return:

Mathematics of N-step TD Prediction

7.1. N -STEP TD PREDICTION 153

More formally, consider the backup applied to state St as a result of the state–
reward sequence, St, Rt+1, St+1, Rt+2, . . . , RT , ST (omitting the actions for simplic-
ity). We know that in Monte Carlo backups the estimate of v⇡(St) is updated in the
direction of the complete return:

Gt
.
= Rt+1 + �Rt+2 + �2Rt+3 + · · · + �T�t�1RT ,

where T is the last time step of the episode. Let us call this quantity the target of
the backup. Whereas in Monte Carlo backups the target is the return, in one-step
backups the target is the first reward plus the discounted estimated value of the next
state, which we call the one-step return:

G(1)
t

.
= Rt+1 + �Vt(St+1),

where Vt : S ! R here is the estimate at time t of v⇡, in which case it makes sense
that �Vt(St+1) should take the place of the remaining terms �Rt+2 + �2Rt+3 + · · · +
�T�t�1RT , as we discussed in the previous chapter. Our point now is that this idea
makes just as much sense after two steps as it does after one. The target for a
two-step target is the two-step return:

G(2)
t

.
= Rt+1 + �Rt+2 + �2Vt(St+2),

where now �2Vt(St+2) corrects for the absence of the terms �2Rt+3 + �3Rt+4 + · · · +
�T�t�1RT . Similarly, the target for an arbitrary n-step backup is the n-step return:

G(n)
t

.
= Rt+1 + �Rt+2 + �2 + · · · + �n�1Rt+n + �nVt(St+n), 8n � 1. (7.1)

All the n-step returns can be considered approximations to the full return, truncated
after n steps and then corrected for the remaining missing terms by Vt(St+n).

The time t + n is called the horizon of the n-step return. If the episode ends
before the horizon is reached, then the truncation in an n-step return e↵ectively
occurs at the episode’s end, resulting in the conventional complete return. In other

words, if t+n � T , then G(n)
t = Gt. Thus, the last n n-step returns of an episode are

always complete returns, and an infinite-step return is always a complete return. This
definition enables us to treat Monte Carlo methods as the special case of infinite-step
targets. All of this is consistent with the tricks for treating episodic and continuing
tasks equivalently that we introduced in Section 3.4. There we chose to treat the
terminal state as a state that always transitions to itself with zero reward. Under
this trick, all n-step returns that last up to or past termination have the same value
as the complete return.

An n-step backup is defined to be a backup toward the n-step return. In the tab-
ular, state-value case, the n-step backup at time t produces the following increment
�t(St) in the estimated value Vt(St):

�t(St)
.
= ↵

h
G(n)

t � Vt(St)
i
, (7.2)

7.1. N -STEP TD PREDICTION 153

More formally, consider the backup applied to state St as a result of the state–
reward sequence, St, Rt+1, St+1, Rt+2, . . . , RT , ST (omitting the actions for simplic-
ity). We know that in Monte Carlo backups the estimate of v⇡(St) is updated in the
direction of the complete return:

Gt
.
= Rt+1 + �Rt+2 + �2Rt+3 + · · · + �T�t�1RT ,

where T is the last time step of the episode. Let us call this quantity the target of
the backup. Whereas in Monte Carlo backups the target is the return, in one-step
backups the target is the first reward plus the discounted estimated value of the next
state, which we call the one-step return:

G(1)
t

.
= Rt+1 + �Vt(St+1),

where Vt : S ! R here is the estimate at time t of v⇡, in which case it makes sense
that �Vt(St+1) should take the place of the remaining terms �Rt+2 + �2Rt+3 + · · · +
�T�t�1RT , as we discussed in the previous chapter. Our point now is that this idea
makes just as much sense after two steps as it does after one. The target for a
two-step target is the two-step return:

G(2)
t

.
= Rt+1 + �Rt+2 + �2Vt(St+2),

where now �2Vt(St+2) corrects for the absence of the terms �2Rt+3 + �3Rt+4 + · · · +
�T�t�1RT . Similarly, the target for an arbitrary n-step backup is the n-step return:

G(n)
t

.
= Rt+1 + �Rt+2 + �2 + · · · + �n�1Rt+n + �nVt(St+n), 8n � 1. (7.1)

All the n-step returns can be considered approximations to the full return, truncated
after n steps and then corrected for the remaining missing terms by Vt(St+n).

The time t + n is called the horizon of the n-step return. If the episode ends
before the horizon is reached, then the truncation in an n-step return e↵ectively
occurs at the episode’s end, resulting in the conventional complete return. In other

words, if t+n � T , then G(n)
t = Gt. Thus, the last n n-step returns of an episode are

always complete returns, and an infinite-step return is always a complete return. This
definition enables us to treat Monte Carlo methods as the special case of infinite-step
targets. All of this is consistent with the tricks for treating episodic and continuing
tasks equivalently that we introduced in Section 3.4. There we chose to treat the
terminal state as a state that always transitions to itself with zero reward. Under
this trick, all n-step returns that last up to or past termination have the same value
as the complete return.

An n-step backup is defined to be a backup toward the n-step return. In the tab-
ular, state-value case, the n-step backup at time t produces the following increment
�t(St) in the estimated value Vt(St):

�t(St)
.
= ↵

h
G(n)

t � Vt(St)
i
, (7.2)

7.1. N -STEP TD PREDICTION 153

More formally, consider the backup applied to state St as a result of the state–
reward sequence, St, Rt+1, St+1, Rt+2, . . . , RT , ST (omitting the actions for simplic-
ity). We know that in Monte Carlo backups the estimate of v⇡(St) is updated in the
direction of the complete return:

Gt
.
= Rt+1 + �Rt+2 + �2Rt+3 + · · · + �T�t�1RT ,

where T is the last time step of the episode. Let us call this quantity the target of
the backup. Whereas in Monte Carlo backups the target is the return, in one-step
backups the target is the first reward plus the discounted estimated value of the next
state, which we call the one-step return:

G(1)
t

.
= Rt+1 + �Vt(St+1),

where Vt : S ! R here is the estimate at time t of v⇡, in which case it makes sense
that �Vt(St+1) should take the place of the remaining terms �Rt+2 + �2Rt+3 + · · · +
�T�t�1RT , as we discussed in the previous chapter. Our point now is that this idea
makes just as much sense after two steps as it does after one. The target for a
two-step target is the two-step return:

G(2)
t

.
= Rt+1 + �Rt+2 + �2Vt(St+2),

where now �2Vt(St+2) corrects for the absence of the terms �2Rt+3 + �3Rt+4 + · · · +
�T�t�1RT . Similarly, the target for an arbitrary n-step backup is the n-step return:

G(n)
t

.
= Rt+1 + �Rt+2 + �2 + · · · + �n�1Rt+n + �nVt(St+n), 8n � 1. (7.1)

All the n-step returns can be considered approximations to the full return, truncated
after n steps and then corrected for the remaining missing terms by Vt(St+n).

The time t + n is called the horizon of the n-step return. If the episode ends
before the horizon is reached, then the truncation in an n-step return e↵ectively
occurs at the episode’s end, resulting in the conventional complete return. In other

words, if t+n � T , then G(n)
t = Gt. Thus, the last n n-step returns of an episode are

always complete returns, and an infinite-step return is always a complete return. This
definition enables us to treat Monte Carlo methods as the special case of infinite-step
targets. All of this is consistent with the tricks for treating episodic and continuing
tasks equivalently that we introduced in Section 3.4. There we chose to treat the
terminal state as a state that always transitions to itself with zero reward. Under
this trick, all n-step returns that last up to or past termination have the same value
as the complete return.

An n-step backup is defined to be a backup toward the n-step return. In the tab-
ular, state-value case, the n-step backup at time t produces the following increment
�t(St) in the estimated value Vt(St):

�t(St)
.
= ↵

h
G(n)

t � Vt(St)
i
, (7.2)

7.1. N -STEP TD PREDICTION 153

More formally, consider the backup applied to state St as a result of the state–
reward sequence, St, Rt+1, St+1, Rt+2, . . . , RT , ST (omitting the actions for simplic-
ity). We know that in Monte Carlo backups the estimate of v⇡(St) is updated in the
direction of the complete return:

Gt
.
= Rt+1 + �Rt+2 + �2Rt+3 + · · · + �T�t�1RT ,

where T is the last time step of the episode. Let us call this quantity the target of
the backup. Whereas in Monte Carlo backups the target is the return, in one-step
backups the target is the first reward plus the discounted estimated value of the next
state, which we call the one-step return:

G(1)
t

.
= Rt+1 + �Vt(St+1),

where Vt : S ! R here is the estimate at time t of v⇡, in which case it makes sense
that �Vt(St+1) should take the place of the remaining terms �Rt+2 + �2Rt+3 + · · · +
�T�t�1RT , as we discussed in the previous chapter. Our point now is that this idea
makes just as much sense after two steps as it does after one. The target for a
two-step target is the two-step return:

G(2)
t

.
= Rt+1 + �Rt+2 + �2Vt(St+2),

where now �2Vt(St+2) corrects for the absence of the terms �2Rt+3 + �3Rt+4 + · · · +
�T�t�1RT . Similarly, the target for an arbitrary n-step backup is the n-step return:

G(n)
t

.
= Rt+1 + �Rt+2 + �2 + · · · + �n�1Rt+n + �nVt(St+n), 8n � 1. (7.1)

All the n-step returns can be considered approximations to the full return, truncated
after n steps and then corrected for the remaining missing terms by Vt(St+n).

The time t + n is called the horizon of the n-step return. If the episode ends
before the horizon is reached, then the truncation in an n-step return e↵ectively
occurs at the episode’s end, resulting in the conventional complete return. In other

words, if t+n � T , then G(n)
t = Gt. Thus, the last n n-step returns of an episode are

always complete returns, and an infinite-step return is always a complete return. This
definition enables us to treat Monte Carlo methods as the special case of infinite-step
targets. All of this is consistent with the tricks for treating episodic and continuing
tasks equivalently that we introduced in Section 3.4. There we chose to treat the
terminal state as a state that always transitions to itself with zero reward. Under
this trick, all n-step returns that last up to or past termination have the same value
as the complete return.

An n-step backup is defined to be a backup toward the n-step return. In the tab-
ular, state-value case, the n-step backup at time t produces the following increment
�t(St) in the estimated value Vt(St):

�t(St)
.
= ↵

h
G(n)

t � Vt(St)
i
, (7.2)

5

Forward View of TD(λ)

Look forward from each state to determine update from
future states and rewards:

162 CHAPTER 7. ELIGIBILITY TRACES

Tim
e

r
t+3

r
t+2

r
t+1

r
T

s
t+1

s
t+2

s
t+3

s
t
St

St+1
St+2

St+3

R
R

R

R

Figure 7.5: The forward or theoretical view. We decide how to update each
state by looking forward to future rewards and states.

. 3

.35

. 4

.45

. 5

.55

0 0.1 0.2 0.3

!

"=0

"=.2

"=.4

"=.6

"=.8

"=.9

"=.95

"=.975

"=.975"=.99"=1

OFF-LINE

"-RETURN

RMS error,
averaged over
first 10 episodes

Figure 7.6: Performance of the o↵-line �-return algorithm on a 19-state random
walk task.

way of mixing n-step backups is that there is a simple algorithm—TD(�)—for
achieving it. This is a mechanism issue rather than a theoretical one. In the
next few sections we develop the mechanistic, or backward, view of eligibility
traces as used in TD(�).

Example 7.2: �-return on the Random Walk Task Figure 7.6 shows
the performance of the o↵-line �-return algorithm on the 19-state random walk
task used with the n-step methods in Example 7.1. The experiment was just
as in the n-step case except that here we varied � instead of n. Note that we
get best performance with an intermediate value of �.

Exercise 7.4 The parameter � characterizes how fast the exponential weight-
ing in Figure 7.4 falls o↵, and thus how far into the future the �-return algo-
rithm looks in determining its backup. But a rate factor such as � is sometimes
an awkward way of characterizing the speed of the decay. For some purposes it

6

Learning with n-step Backups

Backup computes an increment:

Then,
Online updating:

Off-line updating:

7.1. N -STEP TD PREDICTION 153

More formally, consider the backup applied to state St as a result of the state–
reward sequence, St, Rt+1, St+1, Rt+2, . . . , RT , ST (omitting the actions for simplic-
ity). We know that in Monte Carlo backups the estimate of v⇡(St) is updated in the
direction of the complete return:

Gt
.
= Rt+1 + �Rt+2 + �2Rt+3 + · · · + �T�t�1RT ,

where T is the last time step of the episode. Let us call this quantity the target of
the backup. Whereas in Monte Carlo backups the target is the return, in one-step
backups the target is the first reward plus the discounted estimated value of the next
state, which we call the one-step return:

G(1)
t

.
= Rt+1 + �Vt(St+1),

where Vt : S ! R here is the estimate at time t of v⇡, in which case it makes sense
that �Vt(St+1) should take the place of the remaining terms �Rt+2 + �2Rt+3 + · · · +
�T�t�1RT , as we discussed in the previous chapter. Our point now is that this idea
makes just as much sense after two steps as it does after one. The target for a
two-step target is the two-step return:

G(2)
t

.
= Rt+1 + �Rt+2 + �2Vt(St+2),

where now �2Vt(St+2) corrects for the absence of the terms �2Rt+3 + �3Rt+4 + · · · +
�T�t�1RT . Similarly, the target for an arbitrary n-step backup is the n-step return:

G(n)
t

.
= Rt+1 + �Rt+2 + �2 + · · · + �n�1Rt+n + �nVt(St+n), 8n � 1. (7.1)

All the n-step returns can be considered approximations to the full return, truncated
after n steps and then corrected for the remaining missing terms by Vt(St+n).

The time t + n is called the horizon of the n-step return. If the episode ends
before the horizon is reached, then the truncation in an n-step return e↵ectively
occurs at the episode’s end, resulting in the conventional complete return. In other

words, if t+n � T , then G(n)
t = Gt. Thus, the last n n-step returns of an episode are

always complete returns, and an infinite-step return is always a complete return. This
definition enables us to treat Monte Carlo methods as the special case of infinite-step
targets. All of this is consistent with the tricks for treating episodic and continuing
tasks equivalently that we introduced in Section 3.4. There we chose to treat the
terminal state as a state that always transitions to itself with zero reward. Under
this trick, all n-step returns that last up to or past termination have the same value
as the complete return.

An n-step backup is defined to be a backup toward the n-step return. In the tab-
ular, state-value case, the n-step backup at time t produces the following increment
�t(St) in the estimated value Vt(St):

�t(St)
.
= ↵

h
G(n)

t � Vt(St)
i
, (7.2)

154 CHAPTER 7. ELIGIBILITY TRACES

where ↵ is a positive step-size parameter, as usual. The increments to the estimated
values of the other states are defined to be zero (�t(s) = 0, 8s 6= St).

We define the n-step backup in terms of an increment, rather than as a direct
update rule as we did in the previous chapter, in order to allow di↵erent ways of
making the updates. In on-line updating, the updates are made during the episode,
as soon as the increment is computed. In this case we write

Vt+1(s) = Vt(s) + �t(s), 8s 2 S. (7.3)

This kind of updating is what we have implicitly assumed in most of the previous two
chapters. In o↵-line updating, on the other hand, the increments are accumulated
“on the side” and are not used to change value estimates until the end of the episode.
In this case, the approximate values Vt(s), 8s 2 S, do not change during an episode
and can be denoted simpty V (s). At the end of the episode, the new value (for the
next episode) is obtained by summing all the increments during the episode. That
is, for an episode starting at time step 0 and terminating at step T , the update at
episode end for any s 2 S, is

V (s) V (s) +
T�1X

t=0

�t(s). (7.4)

You may recall how in Section 6.3 we carried this idea one step further, deferring
the increments until they could be summed over a whole set of episodes, in batch
updating.

For any value function Vt : S ! R, the expected value of the n-step return is
guaranteed to be a better estimate of v⇡ than Vt is, in a worst-state sense. That is,
the worst error under the new estimate is guaranteed to be less than or equal to �n

times the worst error under Vt:

max
s

���E⇡

h
G(n)

t

���St =s
i
� v⇡(s)

���  �n max
s

���Vt(s)� v⇡(s)
���, (7.5)

for all n � 1. This is called the error reduction property of n-step returns. Because
of the error reduction property, one can show formally that on-line and o↵-line TD
prediction methods using n-step backups converge to the correct predictions under
appropriate technical conditions. The n-step TD methods thus form a family of valid
methods, with one-step TD methods and Monte Carlo methods as extreme members.

Nevertheless, n-step TD methods are rarely used because they are inconvenient
to implement. Computing n-step returns requires waiting n steps to observe the
resultant rewards and states. For large n, this can become problematic, particularly
in control applications. The significance of n-step TD methods is primarily for theory
and for understanding related methods that are more conveniently implemented. In
the next few sections we use the idea of n-step TD methods to explain and justify
eligibility trace methods.

Example 7.1: n-step TD Methods on the Random Walk Consider using
n-step TD methods on the random walk task described in Example 6.2 and shown

154 CHAPTER 7. ELIGIBILITY TRACES

where ↵ is a positive step-size parameter, as usual. The increments to the estimated
values of the other states are defined to be zero (�t(s) = 0, 8s 6= St).

We define the n-step backup in terms of an increment, rather than as a direct
update rule as we did in the previous chapter, in order to allow di↵erent ways of
making the updates. In on-line updating, the updates are made during the episode,
as soon as the increment is computed. In this case we write

Vt+1(s) = Vt(s) + �t(s), 8s 2 S. (7.3)

This kind of updating is what we have implicitly assumed in most of the previous two
chapters. In o↵-line updating, on the other hand, the increments are accumulated
“on the side” and are not used to change value estimates until the end of the episode.
In this case, the approximate values Vt(s), 8s 2 S, do not change during an episode
and can be denoted simpty V (s). At the end of the episode, the new value (for the
next episode) is obtained by summing all the increments during the episode. That
is, for an episode starting at time step 0 and terminating at step T , the update at
episode end for any s 2 S, is

V (s) V (s) +
T�1X

t=0

�t(s). (7.4)

You may recall how in Section 6.3 we carried this idea one step further, deferring
the increments until they could be summed over a whole set of episodes, in batch
updating.

For any value function Vt : S ! R, the expected value of the n-step return is
guaranteed to be a better estimate of v⇡ than Vt is, in a worst-state sense. That is,
the worst error under the new estimate is guaranteed to be less than or equal to �n

times the worst error under Vt:

max
s

���E⇡

h
G(n)

t

���St =s
i
� v⇡(s)

���  �n max
s

���Vt(s)� v⇡(s)
���, (7.5)

for all n � 1. This is called the error reduction property of n-step returns. Because
of the error reduction property, one can show formally that on-line and o↵-line TD
prediction methods using n-step backups converge to the correct predictions under
appropriate technical conditions. The n-step TD methods thus form a family of valid
methods, with one-step TD methods and Monte Carlo methods as extreme members.

Nevertheless, n-step TD methods are rarely used because they are inconvenient
to implement. Computing n-step returns requires waiting n steps to observe the
resultant rewards and states. For large n, this can become problematic, particularly
in control applications. The significance of n-step TD methods is primarily for theory
and for understanding related methods that are more conveniently implemented. In
the next few sections we use the idea of n-step TD methods to explain and justify
eligibility trace methods.

Example 7.1: n-step TD Methods on the Random Walk Consider using
n-step TD methods on the random walk task described in Example 6.2 and shown

154 CHAPTER 7. ELIGIBILITY TRACES

where ↵ is a positive step-size parameter, as usual. The increments to the estimated
values of the other states are defined to be zero (�t(s) = 0, 8s 6= St).

We define the n-step backup in terms of an increment, rather than as a direct
update rule as we did in the previous chapter, in order to allow di↵erent ways of
making the updates. In on-line updating, the updates are made during the episode,
as soon as the increment is computed. In this case we write

Vt+1(s) = Vt(s) + �t(s), 8s 2 S. (7.3)

This kind of updating is what we have implicitly assumed in most of the previous two
chapters. In o↵-line updating, on the other hand, the increments are accumulated
“on the side” and are not used to change value estimates until the end of the episode.
In this case, the approximate values Vt(s), 8s 2 S, do not change during an episode
and can be denoted simpty V (s). At the end of the episode, the new value (for the
next episode) is obtained by summing all the increments during the episode. That
is, for an episode starting at time step 0 and terminating at step T , the update at
episode end for any s 2 S, is

V (s) V (s) +
T�1X

t=0

�t(s). (7.4)

You may recall how in Section 6.3 we carried this idea one step further, deferring
the increments until they could be summed over a whole set of episodes, in batch
updating.

For any value function Vt : S ! R, the expected value of the n-step return is
guaranteed to be a better estimate of v⇡ than Vt is, in a worst-state sense. That is,
the worst error under the new estimate is guaranteed to be less than or equal to �n

times the worst error under Vt:

max
s

���E⇡

h
G(n)

t

���St =s
i
� v⇡(s)

���  �n max
s

���Vt(s)� v⇡(s)
���, (7.5)

for all n � 1. This is called the error reduction property of n-step returns. Because
of the error reduction property, one can show formally that on-line and o↵-line TD
prediction methods using n-step backups converge to the correct predictions under
appropriate technical conditions. The n-step TD methods thus form a family of valid
methods, with one-step TD methods and Monte Carlo methods as extreme members.

Nevertheless, n-step TD methods are rarely used because they are inconvenient
to implement. Computing n-step returns requires waiting n steps to observe the
resultant rewards and states. For large n, this can become problematic, particularly
in control applications. The significance of n-step TD methods is primarily for theory
and for understanding related methods that are more conveniently implemented. In
the next few sections we use the idea of n-step TD methods to explain and justify
eligibility trace methods.

Example 7.1: n-step TD Methods on the Random Walk Consider using
n-step TD methods on the random walk task described in Example 6.2 and shown

154 CHAPTER 7. ELIGIBILITY TRACES

where ↵ is a positive step-size parameter, as usual. The increments to the estimated
values of the other states are defined to be zero (�t(s) = 0, 8s 6= St).

We define the n-step backup in terms of an increment, rather than as a direct
update rule as we did in the previous chapter, in order to allow di↵erent ways of
making the updates. In on-line updating, the updates are made during the episode,
as soon as the increment is computed. In this case we write

Vt+1(s) = Vt(s) + �t(s), 8s 2 S. (7.3)

This kind of updating is what we have implicitly assumed in most of the previous two
chapters. In o↵-line updating, on the other hand, the increments are accumulated
“on the side” and are not used to change value estimates until the end of the episode.
In this case, the approximate values Vt(s), 8s 2 S, do not change during an episode
and can be denoted simpty V (s). At the end of the episode, the new value (for the
next episode) is obtained by summing all the increments during the episode. That
is, for an episode starting at time step 0 and terminating at step T , the update at
episode end for any s 2 S, is

V (s) V (s) +
T�1X

t=0

�t(s). (7.4)

You may recall how in Section 6.3 we carried this idea one step further, deferring
the increments until they could be summed over a whole set of episodes, in batch
updating.

For any value function Vt : S ! R, the expected value of the n-step return is
guaranteed to be a better estimate of v⇡ than Vt is, in a worst-state sense. That is,
the worst error under the new estimate is guaranteed to be less than or equal to �n

times the worst error under Vt:

max
s

���E⇡

h
G(n)

t

���St =s
i
� v⇡(s)

���  �n max
s

���Vt(s)� v⇡(s)
���, (7.5)

for all n � 1. This is called the error reduction property of n-step returns. Because
of the error reduction property, one can show formally that on-line and o↵-line TD
prediction methods using n-step backups converge to the correct predictions under
appropriate technical conditions. The n-step TD methods thus form a family of valid
methods, with one-step TD methods and Monte Carlo methods as extreme members.

Nevertheless, n-step TD methods are rarely used because they are inconvenient
to implement. Computing n-step returns requires waiting n steps to observe the
resultant rewards and states. For large n, this can become problematic, particularly
in control applications. The significance of n-step TD methods is primarily for theory
and for understanding related methods that are more conveniently implemented. In
the next few sections we use the idea of n-step TD methods to explain and justify
eligibility trace methods.

Example 7.1: n-step TD Methods on the Random Walk Consider using
n-step TD methods on the random walk task described in Example 6.2 and shown

7

Error-reduction property

Error reduction property of n-step returns

Using this, you can show that n-step methods converge

Maximum error using n-step return Maximum error using V

154 CHAPTER 7. ELIGIBILITY TRACES

where ↵ is a positive step-size parameter, as usual. The increments to the estimated
values of the other states are defined to be zero (�t(s) = 0, 8s 6= St).

We define the n-step backup in terms of an increment, rather than as a direct
update rule as we did in the previous chapter, in order to allow di↵erent ways of
making the updates. In on-line updating, the updates are made during the episode,
as soon as the increment is computed. In this case we write

Vt+1(s) = Vt(s) + �t(s), 8s 2 S. (7.3)

This kind of updating is what we have implicitly assumed in most of the previous two
chapters. In o↵-line updating, on the other hand, the increments are accumulated
“on the side” and are not used to change value estimates until the end of the episode.
In this case, the approximate values Vt(s), 8s 2 S, do not change during an episode
and can be denoted simpty V (s). At the end of the episode, the new value (for the
next episode) is obtained by summing all the increments during the episode. That
is, for an episode starting at time step 0 and terminating at step T , the update at
episode end for any s 2 S, is

V (s) V (s) +
T�1X

t=0

�t(s). (7.4)

You may recall how in Section 6.3 we carried this idea one step further, deferring
the increments until they could be summed over a whole set of episodes, in batch
updating.

For any value function Vt : S ! R, the expected value of the n-step return is
guaranteed to be a better estimate of v⇡ than Vt is, in a worst-state sense. That is,
the worst error under the new estimate is guaranteed to be less than or equal to �n

times the worst error under Vt:

max
s

���E⇡

h
G(n)

t

���St =s
i
� v⇡(s)

���  �n max
s

���Vt(s)� v⇡(s)
���, (7.5)

for all n � 1. This is called the error reduction property of n-step returns. Because
of the error reduction property, one can show formally that on-line and o↵-line TD
prediction methods using n-step backups converge to the correct predictions under
appropriate technical conditions. The n-step TD methods thus form a family of valid
methods, with one-step TD methods and Monte Carlo methods as extreme members.

Nevertheless, n-step TD methods are rarely used because they are inconvenient
to implement. Computing n-step returns requires waiting n steps to observe the
resultant rewards and states. For large n, this can become problematic, particularly
in control applications. The significance of n-step TD methods is primarily for theory
and for understanding related methods that are more conveniently implemented. In
the next few sections we use the idea of n-step TD methods to explain and justify
eligibility trace methods.

Example 7.1: n-step TD Methods on the Random Walk Consider using
n-step TD methods on the random walk task described in Example 6.2 and shown

8

Random Walk Examples

How does 2-step TD work here?
How about 3-step TD?

6.2. ADVANTAGES OF TD PREDICTION METHODS 135

A B C D E
100000

start

Figure 6.5: A small Markov process for generating random walks.

other words, which method learns faster? Which makes the more e�cient use
of limited data? At the current time this is an open question in the sense
that no one has been able to prove mathematically that one method converges
faster than the other. In fact, it is not even clear what is the most appro-
priate formal way to phrase this question! In practice, however, TD methods
have usually been found to converge faster than constant-↵ MC methods on
stochastic tasks, as illustrated in the following example.

Example 6.2: Random Walk In this example we empirically compare the
prediction abilities of TD(0) and constant-↵ MC applied to the small Markov
process shown in Figure 6.5. All episodes start in the center state, C, and
proceed either left or right by one state on each step, with equal probabil-
ity. This behavior is presumably due to the combined e↵ect of a fixed policy
and an environment’s state-transition probabilities, but we do not care which;
we are concerned only with predicting returns however they are generated.
Episodes terminate either on the extreme left or the extreme right. When an
episode terminates on the right a reward of +1 occurs; all other rewards are
zero. For example, a typical walk might consist of the following state-and-
reward sequence: C, 0,B, 0,C, 0,D, 0,E, 1. Because this task is undiscounted
and episodic, the true value of each state is the probability of terminating
on the right if starting from that state. Thus, the true value of the cen-
ter state is v

⇡

(C) = 0.5. The true values of all the states, A through E, are
1
6 ,

2
6 ,

3
6 ,

4
6 , and 5

6 . Figure 6.6 shows the values learned by TD(0) approaching the
true values as more episodes are experienced. Averaging over many episode
sequences, Figure 6.7 shows the average error in the predictions found by
TD(0) and constant-↵ MC, for a variety of values of ↵, as a function of num-
ber of episodes. In all cases the approximate value function was initialized
to the intermediate value V (s) = 0.5, for all s. The TD method is consis-
tently better than the MC method on this task over this number of episodes.

Exercise 6.1 This is an exercise to help develop your intuition about why
TD methods are often more e�cient than Monte Carlo methods. Consider
the driving home example and how it is addressed by TD and Monte Carlo
methods. Can you imagine a scenario in which a TD update would be better on
average than an Monte Carlo update? Give an example scenario—a description
of past experience and a current state—in which you would expect the TD

9

A Larger Example – 19-state Random Walk

On-line is better than off-line
An intermediate n is best
Do you think there is an optimal n? for every task?

7.1. N -STEP TD PREDICTION 155

in Figure 6.5. Suppose the first episode progressed directly from the center state,
C, to the right, through D and E, and then terminated on the right with a return
of 1. Recall that the estimated values of all the states started at an intermediate
value, V (s) = 0.5. As a result of this experience, a one-step method would change
only the estimate for the last state, V (E), which would be incremented toward 1, the
observed return. A two-step method, on the other hand, would increment the values
of the two states preceding termination: V (D) and V (E) both would be incremented
toward 1. A three-step method, or any n-step method for n > 2, would increment
the values of all three of the visited states toward 1, all by the same amount.

Which value of n is better? Figure 7.2 shows the results of a simple empirical test
for a larger random walk process, with 19 states (and with a �1 outcome on the left,
all values initialized to 0), which we use as a running example in this chapter. Results
are shown for on-line and o↵-line n-step TD methods with a range of values for n and
↵. The performance measure for each algorithm and parameter setting, shown on the
vertical axis, is the square-root of the average squared error between its predictions at
the end of the episode for the 19 states and their true values, then averaged over the
first 10 episodes and 100 repetitions of the whole experiment (the same sets of walks
were used for all methods). First note that the on-line methods generally worked best
on this task, both reaching lower levels of absolute error and doing so over a larger
range of the step-size parameter ↵ (in fact, all the o↵-line methods were unstable for ↵
much above 0.3). Second, note that methods with an intermediate value of n worked
best. This illustrates how the generalization of TD and Monte Carlo methods to n-
step methods can potentially perform better than either of the two extreme methods.

On-line n-step TD methods Off-line n-step TD methods

↵↵

RMS error
over first

10 episodes

n=1

n=2

n=4
n=8n=16

n=32

n=64
256

128
512

n=3
n=64

n=1

n=2
n=4

n=8

n=16

n=32

n=32n=64128512
256

Figure 7.2: Performance of n-step TD methods as a function of ↵, for various values of n,
on a 19-state random walk task (Example 7.1).

10

Averaging N-step Returns

n-step methods were introduced to help
with TD(λ) understanding
Idea: backup an average of several returns

e.g. backup half of 2-step and half of
4-step

Called a complex backup
Draw each component
Label with the weights for that
component

A complex backup

7.2. THE FORWARD VIEW OF TD(�) 159

⇤Exercise 7.3 In the lower part of Figure 7.2, notice that the plot for n = 3 is
di↵erent from the others, dropping to low performance at a much lower value of
↵ than similar methods. In fact, the same was observed for n = 5, n = 7, and
n = 9. Can you explain why this might have been so? In fact, we are not sure
ourselves. See http://www.cs.utexas.edu/~ikarpov/Classes/RL/RandomWalk/
for an attempt at a thorough answer by Igor Karpov.

7.2 The Forward View of TD(�)

Backups can be done not just toward any n-step return, but toward any average
of n-step returns. For example, a backup can be done toward a return that
is half of a two-step return and half of a four-step return: G

ave

t

= 1
2G

(2)
t

+
1
2G

(4)
t

. Any set of returns can be averaged in this way, even an infinite set,
as long as the weights on the component returns are positive and sum to
1. The overall return possesses an error reduction property similar to that of
individual n-step returns (7.2) and thus can be used to construct backups with
guaranteed convergence properties. Averaging produces a substantial new
range of algorithms. For example, one could average one-step and infinite-
step backups to obtain another way of interrelating TD and Monte Carlo
methods. In principle, one could even average experience-based backups with
DP backups to get a simple combination of experience-based and model-based
methods (see Chapter 8).

A backup that averages simpler component backups in this way is called
a complex backup. The backup diagram for a complex backup consists of the
backup diagrams for each of the component backups with a horizontal line
above them and the weighting fractions below. For example, the complex
backup mentioned above, mixing half of a two-step backup and half of a four-
step backup, has the diagram:

1

2

1

2

156 CHAPTER 7. ELIGIBILITY TRACES

7.2 The Forward View of TD(�)

Backups can be done not just toward any n-step return, but toward any average of
n-step returns. For example, a backup can be done toward a target that is half of a

two-step return and half of a four-step return: 1
2G(2)

t + 1
2G(4)

t . Any set of returns can
be averaged in this way, even an infinite set, as long as the weights on the component
returns are positive and sum to 1. The composite return possesses an error reduction
property similar to that of individual n-step returns (7.5) and thus can be used to
construct backups with guaranteed convergence properties. Averaging produces a
substantial new range of algorithms. For example, one could average one-step and
infinite-step returns to obtain another way of interrelating TD and Monte Carlo
methods. In principle, one could even average experience-based backups with DP
backups to get a simple combination of experience-based and model-based methods
(see Chapter 8).

A backup that averages simpler component backups is called a complex backup.
The backup diagram for a complex backup consists of the backup diagrams for each of
the component backups with a horizontal line above them and the weighting fractions
below. For example, the complex backup for the case mentioned at the start of this
section, mixing half of a two-step backup and half of a four-step backup, has the
diagram:

1

2

1

2

The TD(�) algorithm can be understood as one particular way of averaging n-step
backups. This average contains all the n-step backups, each weighted proportional
to �n�1, where � 2 [0, 1], and normalized by a factor of 1 � � to ensure that the
weights sum to 1 (see Figure 7.3). The resulting backup is toward a return, called
the �-return, defined by

G�
t

.
= (1 � �)

1X

n=1

�n�1G(n)
t .

Figure 7.4 further illustrates the weighting on the sequence of n-step returns in the
�-return. The one-step return is given the largest weight, 1 � �; the two-step return

11

Forward View of TD(λ)

TD(λ) is a method for
averaging all n-step
backups

weight by λn-1 (time
since visitation)
λ-return:

Backup using λ-return:

160 CHAPTER 7. ELIGIBILITY TRACES

1!"

(1!") "

(1!") "
2

= 1

TD("), "-return

"
T-t-1

Figure 7.3: The backup digram for TD(�). If � = 0, then the overall backup
reduces to its first component, the one-step TD backup, whereas if � = 1, then
the overall backup reduces to its last component, the Monte Carlo backup.

The TD(�) algorithm can be understood as one particular way of averaging
n-step backups. This average contains all the n-step backups, each weighted
proportional to �

n�1, where 0  �  1 (Figure 7.3). A normalization factor
of 1 � � ensures that the weights sum to 1. The resulting backup is toward a
return, called the �-return, defined by

G

�

t

= (1 � �)
1X

n=1

�

n�1
G

(n)
t

.

Figure 7.4 illustrates this weighting sequence. The one-step return is given
the largest weight, 1 � �; the two-step return is given the next largest weight,
(1 � �)�; the three-step return is given the weight (1 � �)�2; and so on. The
weight fades by � with each additional step. After a terminal state has been
reached, all subsequent n-step returns are equal to G

t

. If we want, we can
separate these terms from the main sum, yielding

G

�

t

= (1 � �)
T�t�1X

n=1

�

n�1
G

(n)
t

+ �

T�t�1
G

t

. (7.3)

This equation makes it clearer what happens when � = 1. In this case the
main sum goes to zero, and the remaining term reduces to the conventional
return, G

t

. Thus, for � = 1, backing up according to the �-return is the
same as the Monte Carlo algorithm that we called constant-↵ MC (6.1) in

156 CHAPTER 7. ELIGIBILITY TRACES

7.2 The Forward View of TD(�)

Backups can be done not just toward any n-step return, but toward any average of
n-step returns. For example, a backup can be done toward a target that is half of a

two-step return and half of a four-step return: 1
2G(2)

t + 1
2G(4)

t . Any set of returns can
be averaged in this way, even an infinite set, as long as the weights on the component
returns are positive and sum to 1. The composite return possesses an error reduction
property similar to that of individual n-step returns (7.5) and thus can be used to
construct backups with guaranteed convergence properties. Averaging produces a
substantial new range of algorithms. For example, one could average one-step and
infinite-step returns to obtain another way of interrelating TD and Monte Carlo
methods. In principle, one could even average experience-based backups with DP
backups to get a simple combination of experience-based and model-based methods
(see Chapter 8).

A backup that averages simpler component backups is called a complex backup.
The backup diagram for a complex backup consists of the backup diagrams for each of
the component backups with a horizontal line above them and the weighting fractions
below. For example, the complex backup for the case mentioned at the start of this
section, mixing half of a two-step backup and half of a four-step backup, has the
diagram:

1

2

1

2

The TD(�) algorithm can be understood as one particular way of averaging n-step
backups. This average contains all the n-step backups, each weighted proportional
to �n�1, where � 2 [0, 1], and normalized by a factor of 1 � � to ensure that the
weights sum to 1 (see Figure 7.3). The resulting backup is toward a return, called
the �-return, defined by

G�
t

.
= (1 � �)

1X

n=1

�n�1G(n)
t .

Figure 7.4 further illustrates the weighting on the sequence of n-step returns in the
�-return. The one-step return is given the largest weight, 1 � �; the two-step return

158 CHAPTER 7. ELIGIBILITY TRACES

is given the next largest weight, (1 � �)�; the three-step return is given the weight
(1 � �)�2; and so on. The weight fades by � with each additional step. After a
terminal state has been reached, all subsequent n-step returns are equal to Gt. If we
want, we can separate these post-termination terms from the main sum, yielding

G�
t = (1 � �)

T�t�1X

n=1

�n�1G(n)
t + �T�t�1Gt, (7.6)

as indicated in the figures. This equation makes it clearer what happens when
� = 1. In this case the main sum goes to zero, and the remaining term reduces to
the conventional return, Gt. Thus, for � = 1, backing up according to the �-return
is the same as the Monte Carlo algorithm that we called constant-↵ MC (6.1) in the

previous chapter. On the other hand, if � = 0, then the �-return reduces to G(1)
t , the

one-step return. Thus, for � = 0, backing up according to the �-return is the same
as the one-step TD method that we called TD(0) (6.2) in the previous chapter.

We define the �-return algorithm as the method that performs backups towards
the �-return G�

t as target. On each step, t, it computes an increment, �t(St), to the
value of the state occurring on that step:

�t(St)
.
= ↵

h
G�

t � Vt(St)
i
. (7.7)

(The increments for other states are of course �t(s) = 0, for all s 6= St.) As with n-
step TD methods, the updating can be either on-line or o↵-line. Figure 7.5 shows the
performance of the on-line and o↵-line �-return algorithms on the 19-state random
walk task (Example 7.1). The experiment was just as in the n-step case (Figure 7.2)
except that here we varied � instead of n. Note that overall performance of the
�-return algorithms is comparable to that of the n-step algorithms. In both cases we
get best performance with an intermediate value of the truncation parameter, n for
n-step methods and � for the �-return algorithm.

On-line λ-return algorithm Off-line λ-return algorithm
≡ off-line TD(λ), accumulating traces

↵↵

RMS error
over first

10 episodes
λ=0

λ=.4
λ=.8

λ=.9

λ=.95

λ=.975
λ=.99

λ=1

λ=.95
λ=0

λ=.4

λ=.8

λ=.9
λ=.95

λ=.975

λ=.99
λ=1

λ=.99

Figure 7.5: Performance of all �-return algorithms on the 19-state random walk (Example
7.1). On-line is better, as are intermediate parameter values.

12

λ-return Weighting Function

Until termination After termination

160 CHAPTER 7. ELIGIBILITY TRACES

1!"

(1!") "

(1!") "
2

= 1

TD("), "-return

"
T-t-1

Figure 7.3: The backup digram for TD(�). If � = 0, then the overall backup
reduces to its first component, the one-step TD backup, whereas if � = 1, then
the overall backup reduces to its last component, the Monte Carlo backup.

The TD(�) algorithm can be understood as one particular way of averaging
n-step backups. This average contains all the n-step backups, each weighted
proportional to �

n�1, where 0  �  1 (Figure 7.3). A normalization factor
of 1 � � ensures that the weights sum to 1. The resulting backup is toward a
return, called the �-return, defined by

G

�

t

= (1 � �)
1X

n=1

�

n�1
G

(n)
t

.

Figure 7.4 illustrates this weighting sequence. The one-step return is given
the largest weight, 1 � �; the two-step return is given the next largest weight,
(1 � �)�; the three-step return is given the weight (1 � �)�2; and so on. The
weight fades by � with each additional step. After a terminal state has been
reached, all subsequent n-step returns are equal to G

t

. If we want, we can
separate these terms from the main sum, yielding

G

�

t

= (1 � �)
T�t�1X

n=1

�

n�1
G

(n)
t

+ �

T�t�1
G

t

. (7.3)

This equation makes it clearer what happens when � = 1. In this case the
main sum goes to zero, and the remaining term reduces to the conventional
return, G

t

. Thus, for � = 1, backing up according to the �-return is the
same as the Monte Carlo algorithm that we called constant-↵ MC (6.1) in

7.2. THE FORWARD VIEW OF TD(�) 161

1!"

weight given to

the 3-step return

decay by "

weight given to

actual, final return

t T

Time

Weight

total area = 1

Figure 7.4: Weighting given in the �-return to each of the n-step returns.

the previous chapter. On the other hand, if � = 0, then the �-return reduces
to G

(1)
t

, the one-step return. Thus, for � = 0, backing up according to the
�-return is the same as the one-step TD method, TD(0).

We define the �-return algorithm as the algorithm that performs backups
using the �-return. On each step, t, it computes an increment, �V

t

(S
t

), to the
value of the state occurring on that step:

�V

t

(S
t

) = ↵

h
G

�

t

� V

t

(S
t

)
i
. (7.4)

(The increments for other states are of course �V

t

(s) = 0, for all s 6= S

t

.) As
with the n-step TD methods, the updating can be either on-line or o↵-line.

The approach that we have been taking so far is what we call the theoret-
ical, or forward, view of a learning algorithm. For each state visited, we look
forward in time to all the future rewards and decide how best to combine them.
We might imagine ourselves riding the stream of states, looking forward from
each state to determine its update, as suggested by Figure 7.5. After looking
forward from and updating one state, we move on to the next and never have
to work with the preceding state again. Future states, on the other hand,
are viewed and processed repeatedly, once from each vantage point preceding
them.

The �-return algorithm is the basis for the forward view of eligibility traces
as used in the TD(�) method. In fact, we show in a later section that, in the
o↵-line case, the �-return algorithm is the TD(�) algorithm. The �-return
and TD(�) methods use the � parameter to shift from one-step TD methods
to Monte Carlo methods. The specific way this shift is done is interesting,
but not obviously better or worse than the way it is done with simple n-step
methods by varying n. Ultimately, the most compelling motivation for the �

13

Relation to TD(0) and MC

The λ-return can be rewritten as:

If λ = 1, you get MC:

If λ = 0, you get TD(0)

Until termination After termination

160 CHAPTER 7. ELIGIBILITY TRACES

1!"

(1!") "

(1!") "
2

= 1

TD("), "-return

"
T-t-1

Figure 7.3: The backup digram for TD(�). If � = 0, then the overall backup
reduces to its first component, the one-step TD backup, whereas if � = 1, then
the overall backup reduces to its last component, the Monte Carlo backup.

The TD(�) algorithm can be understood as one particular way of averaging
n-step backups. This average contains all the n-step backups, each weighted
proportional to �

n�1, where 0  �  1 (Figure 7.3). A normalization factor
of 1 � � ensures that the weights sum to 1. The resulting backup is toward a
return, called the �-return, defined by

G

�

t

= (1 � �)
1X

n=1

�

n�1
G

(n)
t

.

Figure 7.4 illustrates this weighting sequence. The one-step return is given
the largest weight, 1 � �; the two-step return is given the next largest weight,
(1 � �)�; the three-step return is given the weight (1 � �)�2; and so on. The
weight fades by � with each additional step. After a terminal state has been
reached, all subsequent n-step returns are equal to G

t

. If we want, we can
separate these terms from the main sum, yielding

G

�

t

= (1 � �)
T�t�1X

n=1

�

n�1
G

(n)
t

+ �

T�t�1
G

t

. (7.3)

This equation makes it clearer what happens when � = 1. In this case the
main sum goes to zero, and the remaining term reduces to the conventional
return, G

t

. Thus, for � = 1, backing up according to the �-return is the
same as the Monte Carlo algorithm that we called constant-↵ MC (6.1) in

G�
t = (1� �)

T�t�1X

n=1

�n�1G(n)
t + �T�t�1Gt (1)

G�
t = (1� 1)

T�t�1X

n=1

1

n�1G(n)
t + 1

T�t�1Gt = Gt (2)

G�
t = (1� 0)

T�t�1X

n=1

0

n�1G(n)
t + 0

T�t�1Gt = G(1)

t (3)

R S A(s)
Ea[a]

! = s
0

, a
0

, s
1

, a
1

, . . .

The other random variables are a function of this sequence. The transitional

target rt+1

is a function of st, at, and st+1

. The termination condition �t,

terminal target zt, and prediction yt, are functions of st alone.

R(n)
t = rt+1

+ �t+1

zt+1

+ (1� �t+1

)R(n�1)

t+1

R(0)

t = yt

R�
t = (1� �)

1X

n=1

�n�1R(n)
t

⇢t =
⇡(st, at)

b(st, at)

�wo↵

(!) = �won

(!)
1Y

i=1

⇢i

�wt = ↵t(CtR
�
t � yt)rwyt

�wt = ↵t(
¯R�
t � yt)rwyt

1

G�
t = (1� �)

T�t�1X

n=1

�n�1G(n)
t + �T�t�1Gt (1)

G�
t = (1� 1)

T�t�1X

n=1

1

n�1G(n)
t + 1

T�t�1Gt = Gt (2)

G�
t = (1� 0)

T�t�1X

n=1

0

n�1G(n)
t + 0

T�t�1Gt = G(1)

t (3)

R S A(s)
Ea[a]

! = s
0

, a
0

, s
1

, a
1

, . . .

The other random variables are a function of this sequence. The transitional

target rt+1

is a function of st, at, and st+1

. The termination condition �t,

terminal target zt, and prediction yt, are functions of st alone.

R(n)
t = rt+1

+ �t+1

zt+1

+ (1� �t+1

)R(n�1)

t+1

R(0)

t = yt

R�
t = (1� �)

1X

n=1

�n�1R(n)
t

⇢t =
⇡(st, at)

b(st, at)

�wo↵

(!) = �won

(!)
1Y

i=1

⇢i

�wt = ↵t(CtR
�
t � yt)rwyt

�wt = ↵t(
¯R�
t � yt)rwyt

1

14

Forward View of TD(λ)

Look forward from each state to determine update from
future states and rewards:

162 CHAPTER 7. ELIGIBILITY TRACES

Tim
e

r
t+3

r
t+2

r
t+1

r
T

s
t+1

s
t+2

s
t+3

s
t
St

St+1
St+2

St+3

R
R

R

R

Figure 7.5: The forward or theoretical view. We decide how to update each
state by looking forward to future rewards and states.

. 3

.35

. 4

.45

. 5

.55

0 0.1 0.2 0.3

!

"=0

"=.2

"=.4

"=.6

"=.8

"=.9

"=.95

"=.975

"=.975"=.99"=1

OFF-LINE

"-RETURN

RMS error,
averaged over
first 10 episodes

Figure 7.6: Performance of the o↵-line �-return algorithm on a 19-state random
walk task.

way of mixing n-step backups is that there is a simple algorithm—TD(�)—for
achieving it. This is a mechanism issue rather than a theoretical one. In the
next few sections we develop the mechanistic, or backward, view of eligibility
traces as used in TD(�).

Example 7.2: �-return on the Random Walk Task Figure 7.6 shows
the performance of the o↵-line �-return algorithm on the 19-state random walk
task used with the n-step methods in Example 7.1. The experiment was just
as in the n-step case except that here we varied � instead of n. Note that we
get best performance with an intermediate value of �.

Exercise 7.4 The parameter � characterizes how fast the exponential weight-
ing in Figure 7.4 falls o↵, and thus how far into the future the �-return algo-
rithm looks in determining its backup. But a rate factor such as � is sometimes
an awkward way of characterizing the speed of the decay. For some purposes it

15

λ-return on the Random Walk

On-line >> Off-line
Intermediate values of λ best
λ-return better than n-step return

158 CHAPTER 7. ELIGIBILITY TRACES

is given the next largest weight, (1 � �)�; the three-step return is given the weight
(1 � �)�2; and so on. The weight fades by � with each additional step. After a
terminal state has been reached, all subsequent n-step returns are equal to Gt. If we
want, we can separate these post-termination terms from the main sum, yielding

G�
t = (1 � �)

T�t�1X

n=1

�n�1G(n)
t + �T�t�1Gt, (7.6)

as indicated in the figures. This equation makes it clearer what happens when
� = 1. In this case the main sum goes to zero, and the remaining term reduces to
the conventional return, Gt. Thus, for � = 1, backing up according to the �-return
is the same as the Monte Carlo algorithm that we called constant-↵ MC (6.1) in the

previous chapter. On the other hand, if � = 0, then the �-return reduces to G(1)
t , the

one-step return. Thus, for � = 0, backing up according to the �-return is the same
as the one-step TD method that we called TD(0) (6.2) in the previous chapter.

We define the �-return algorithm as the method that performs backups towards
the �-return G�

t as target. On each step, t, it computes an increment, �t(St), to the
value of the state occurring on that step:

�t(St)
.
= ↵

h
G�

t � Vt(St)
i
. (7.7)

(The increments for other states are of course �t(s) = 0, for all s 6= St.) As with n-
step TD methods, the updating can be either on-line or o↵-line. Figure 7.5 shows the
performance of the on-line and o↵-line �-return algorithms on the 19-state random
walk task (Example 7.1). The experiment was just as in the n-step case (Figure 7.2)
except that here we varied � instead of n. Note that overall performance of the
�-return algorithms is comparable to that of the n-step algorithms. In both cases we
get best performance with an intermediate value of the truncation parameter, n for
n-step methods and � for the �-return algorithm.

On-line λ-return algorithm Off-line λ-return algorithm
≡ off-line TD(λ), accumulating traces

↵↵

RMS error
over first

10 episodes
λ=0

λ=.4
λ=.8

λ=.9

λ=.95

λ=.975
λ=.99

λ=1

λ=.95
λ=0

λ=.4

λ=.8

λ=.9
λ=.95

λ=.975

λ=.99
λ=1

λ=.99

Figure 7.5: Performance of all �-return algorithms on the 19-state random walk (Example
7.1). On-line is better, as are intermediate parameter values.

16

Backward View

Shout δt backwards over time
The strength of your voice decreases with temporal
distance by γλ

7.4. EQUIVALENCE OF FORWARD AND BACKWARD VIEWS 165

!t
e
t

e
t

e
t

e
t

Time

s
t

s
t+1

s
t-1

s
t-2

s
t-3

!t

St+1
St

St-1
St-2

St-3

xiv SUMMARY OF NOTATION

�t temporal-di↵erence error at t (a random variable, even though not upper case)
Et(s) eligibility trace for state s at t
Et(s, a) eligibility trace for a state–action pair
et eligibility trace vector at t

� discount-rate parameter
" probability of random action in "-greedy policy
↵, � step-size parameters
� decay-rate parameter for eligibility traces

xiv SUMMARY OF NOTATION

�t temporal-di↵erence error at t (a random variable, even though not upper case)
Et(s) eligibility trace for state s at t
Et(s, a) eligibility trace for a state–action pair
et eligibility trace vector at t

� discount-rate parameter
" probability of random action in "-greedy policy
↵, � step-size parameters
� decay-rate parameter for eligibility traces

xiv SUMMARY OF NOTATION

�t temporal-di↵erence error at t (a random variable, even though not upper case)
Et(s) eligibility trace for state s at t
Et(s, a) eligibility trace for a state–action pair
et eligibility trace vector at t

� discount-rate parameter
" probability of random action in "-greedy policy
↵, � step-size parameters
� decay-rate parameter for eligibility traces

xiv SUMMARY OF NOTATION

�t temporal-di↵erence error at t (a random variable, even though not upper case)
Et(s) eligibility trace for state s at t
Et(s, a) eligibility trace for a state–action pair
et eligibility trace vector at t

� discount-rate parameter
" probability of random action in "-greedy policy
↵, � step-size parameters
� decay-rate parameter for eligibility traces

Figure 7.8: The backward or mechanistic view. Each update depends on the
current TD error combined with eligibility traces of past events.

in a return, by �k, which is just what the falling eligibility trace achieves. If
� = 1 and � = 1, then the eligibility traces do not decay at all with time. In
this case the method behaves like a Monte Carlo method for an undiscounted,
episodic task. If � = 1, the algorithm is also known as TD(1).

TD(1) is a way of implementing Monte Carlo algorithms that is more gen-
eral than those presented earlier and that significantly increases their range
of applicability. Whereas the earlier Monte Carlo methods were limited to
episodic tasks, TD(1) can be applied to discounted continuing tasks as well.
Moreover, TD(1) can be performed incrementally and on-line. One disadvan-
tage of Monte Carlo methods is that they learn nothing from an episode until
it is over. For example, if a Monte Carlo control method does something that
produces a very poor reward but does not end the episode, then the agent’s
tendency to do that will be undiminished during the episode. On-line TD(1),
on the other hand, learns in an n-step TD way from the incomplete ongoing
episode, where the n steps are all the way up to the current step. If something
unusually good or bad happens during an episode, control methods based on
TD(1) can learn immediately and alter their behavior on that same episode.

7.4 Equivalence of Forward and Backward Views

In this section we show that o↵-line TD(�), as defined mechanistically above,
achieves the same weight updates as the o↵-line �-return algorithm. In this
sense we align the forward (theoretical) and backward (mechanistic) views of
TD(�). Let �V �

t (St) denote the update at time t of V (St) according to the
�-return algorithm (7.4), and let �V TD

t (s) denote the update at time t of state

160 CHAPTER 7. ELIGIBILITY TRACES

a random variable denoted Et(s) 2 R+. On each step, the eligibility traces of all
non-visited states decay by ��:

Et(s)
.
= ��Et�1(s), 8s 2 S, s 6= St, (7.8)

where � is the discount rate and � is the parameter introduced in the previous section.
Henceforth we refer to � as the trace-decay parameter. What about the trace for St,
the one state visited at time t? The classical eligibility trace for St decays just like
for any state, but is then incremented by 1:

Et(St)
.
= ��Et�1(St) + 1. (7.9)

This kind of eligibility trace is called an accumulating trace because it accumulates
each time the state is visited, then fades away gradually when the state is not visited,
as illustrated as illustrated below.

accumulating eligibility trace

times of visits to a state

Eligibility traces keep a simple record of which states have been visited recently,
where “recently” is defined in terms of ��. The traces are said to indicate the degree
to which each state is eligible for undergoing learning changes should a reinforcing
event occur. The reinforcing events we are concerned with are the moment-by-
moment one-step TD errors. For example, the TD error for state-value prediction
is

�t
.
= Rt+1 + �Vt(St+1) � Vt(St). (7.10)

In the backward view of TD(�), the global TD error signal triggers proportional
updates to all recently visited states, in proportion to their eligibility traces:

�Vt(s)
.
= ↵�tEt(s), for all s 2 S. (7.11)

As always, these increments could be done on each step to form an on-line algorithm,
or saved until the end of the episode to produce an o↵-line algorithm. In either case,
equations (7.8–7.11) provide the mechanistic definition of the on-line and o↵-line
TD(�) algorithms. A complete algorithm for on-line TD(�) is given in Figure 7.7.

The backward view of TD(�) is oriented backward in time. At each moment we
look at the current TD error and assign it backward to each prior state according to
the state’s eligibility trace at that time. We might imagine ourselves riding along the
stream of states, computing TD errors, and shouting them back to the previously
visited states, as suggested by Figure 7.8. Where the TD error and traces come
together, we get the update given by (7.11).

To better understand the backward view, consider what happens at various values
of �. If � = 0, then by (7.9) all traces are zero at t except for the trace corresponding

160 CHAPTER 7. ELIGIBILITY TRACES

a random variable denoted Et(s) 2 R+. On each step, the eligibility traces of all
non-visited states decay by ��:

Et(s)
.
= ��Et�1(s), 8s 2 S, s 6= St, (7.8)

where � is the discount rate and � is the parameter introduced in the previous section.
Henceforth we refer to � as the trace-decay parameter. What about the trace for St,
the one state visited at time t? The classical eligibility trace for St decays just like
for any state, but is then incremented by 1:

Et(St)
.
= ��Et�1(St) + 1. (7.9)

This kind of eligibility trace is called an accumulating trace because it accumulates
each time the state is visited, then fades away gradually when the state is not visited,
as illustrated as illustrated below.

accumulating eligibility trace

times of visits to a state

Eligibility traces keep a simple record of which states have been visited recently,
where “recently” is defined in terms of ��. The traces are said to indicate the degree
to which each state is eligible for undergoing learning changes should a reinforcing
event occur. The reinforcing events we are concerned with are the moment-by-
moment one-step TD errors. For example, the TD error for state-value prediction
is

�t
.
= Rt+1 + �Vt(St+1) � Vt(St). (7.10)

In the backward view of TD(�), the global TD error signal triggers proportional
updates to all recently visited states, in proportion to their eligibility traces:

�Vt(s)
.
= ↵�tEt(s), for all s 2 S. (7.11)

As always, these increments could be done on each step to form an on-line algorithm,
or saved until the end of the episode to produce an o↵-line algorithm. In either case,
equations (7.8–7.11) provide the mechanistic definition of the on-line and o↵-line
TD(�) algorithms. A complete algorithm for on-line TD(�) is given in Figure 7.7.

The backward view of TD(�) is oriented backward in time. At each moment we
look at the current TD error and assign it backward to each prior state according to
the state’s eligibility trace at that time. We might imagine ourselves riding along the
stream of states, computing TD errors, and shouting them back to the previously
visited states, as suggested by Figure 7.8. Where the TD error and traces come
together, we get the update given by (7.11).

To better understand the backward view, consider what happens at various values
of �. If � = 0, then by (7.9) all traces are zero at t except for the trace corresponding

17

Backward View of TD(λ)

The forward view was for theory
The backward view is for mechanism

New variable called eligibility trace
On each step, decay all traces by γλ and increment
the trace for the current state by 1
Accumulating trace

7.3. THE BACKWARD VIEW OF TD(�) 163

is better to specify a time constant, or half-life. What is the equation relating
� and the half-life, ⌧

�

, the time by which the weighting sequence will have
fallen to half of its initial value?

7.3 The Backward View of TD(�)

In the previous section we presented the forward or theoretical view of the tab-
ular TD(�) algorithm as a way of mixing backups that parametrically shifts
from a TD method to a Monte Carlo method. In this section we instead define
TD(�) mechanistically, and in the next section we show that this mechanism
correctly implements the forward view. The mechanistic, or backward , view
of TD(�) is useful because it is simple conceptually and computationally. In
particular, the forward view itself is not directly implementable because it is
acausal, using at each step knowledge of what will happen many steps later.
The backward view provides a causal, incremental mechanism for approximat-
ing the forward view and, in the o↵-line case, for achieving it exactly.

In the backward view of TD(�), there is an additional memory variable
associated with each state, its eligibility trace. The eligibility trace for state
s at time t is a random variable denoted Z

t

(s) 2 R+. On each step, the
eligibility traces for all states decay by ��, and the eligibility trace for the one
state visited on the step is incremented by 1:

Z

t

(s) =

⇢
��Z

t�1(s) if s 6=S

t

;
��Z

t�1(s) + 1 if s=S

t

,

(7.5)

for all nonterminal states s, where � is the discount rate and � is the parameter
introduced in the previous section. Henceforth we refer to � as the trace-decay
parameter. This kind of eligibility trace is called an accumulating trace because
it accumulates each time the state is visited, then fades away gradually when
the state is not visited, as illustrated below:

accumulating eligibility trace

times of visits to a state

At any time, the traces record which states have recently been visited,
where “recently” is defined in terms of ��. The traces are said to indicate the
degree to which each state is eligible for undergoing learning changes should
a reinforcing event occur. The reinforcing events we are concerned with are
the moment-by-moment one-step TD errors. For example, the TD error for

7.3. THE BACKWARD VIEW OF TD(�) 163

7.3 The Backward View of TD(�)

In the previous section we presented the forward or theoretical view of the tab-
ular TD(�) algorithm as a way of mixing backups that parametrically shifts
from a TD method to a Monte Carlo method. In this section we instead define
TD(�) mechanistically, and in the next section we show that this mechanism
correctly implements the forward view. The mechanistic, or backward , view
of TD(�) is useful because it is simple conceptually and computationally. In
particular, the forward view itself is not directly implementable because it is
acausal, using at each step knowledge of what will happen many steps later.
The backward view provides a causal, incremental mechanism for approximat-
ing the forward view and, in the o↵-line case, for achieving it exactly.

In the backward view of TD(�), there is an additional memory variable
associated with each state, its eligibility trace. The eligibility trace for state
s at time t is a random variable denoted Et(s) 2 R+. On each step, the
eligibility traces for all states decay by ��, and the eligibility trace for the one
state visited on the step is incremented by 1:

Et(s) =

⇢
��Et�1(s) if s 6=St;
��Et�1(s) + 1 if s=St,

(7.5)

for all nonterminal states s, where � is the discount rate and � is the parameter
introduced in the previous section. Henceforth we refer to � as the trace-decay
parameter. This kind of eligibility trace is called an accumulating trace because
it accumulates each time the state is visited, then fades away gradually when
the state is not visited, as illustrated below:

accumulating eligibility trace

times of visits to a state

At any time, the traces record which states have recently been visited,
where “recently” is defined in terms of ��. The traces are said to indicate the
degree to which each state is eligible for undergoing learning changes should
a reinforcing event occur. The reinforcing events we are concerned with are
the moment-by-moment one-step TD errors. For example, the TD error for
state-value prediction is

�t = Rt+1 + �Vt(St+1) � Vt(St). (7.6)

In the backward view of TD(�), the global TD error signal triggers propor-
tional updates to all recently visited states, as signaled by their nonzero traces:

�Vt(s) = ↵�tEt(s), for all s 2 S. (7.7)

7.3. THE BACKWARD VIEW OF TD(�) 163

7.3 The Backward View of TD(�)

In the previous section we presented the forward or theoretical view of the tab-
ular TD(�) algorithm as a way of mixing backups that parametrically shifts
from a TD method to a Monte Carlo method. In this section we instead define
TD(�) mechanistically, and in the next section we show that this mechanism
correctly implements the forward view. The mechanistic, or backward , view
of TD(�) is useful because it is simple conceptually and computationally. In
particular, the forward view itself is not directly implementable because it is
acausal, using at each step knowledge of what will happen many steps later.
The backward view provides a causal, incremental mechanism for approximat-
ing the forward view and, in the o↵-line case, for achieving it exactly.

In the backward view of TD(�), there is an additional memory variable
associated with each state, its eligibility trace. The eligibility trace for state
s at time t is a random variable denoted Et(s) 2 R+. On each step, the
eligibility traces for all states decay by ��, and the eligibility trace for the one
state visited on the step is incremented by 1:

Et(s) =

⇢
��Et�1(s) if s 6=St;
��Et�1(s) + 1 if s=St,

(7.5)

for all nonterminal states s, where � is the discount rate and � is the parameter
introduced in the previous section. Henceforth we refer to � as the trace-decay
parameter. This kind of eligibility trace is called an accumulating trace because
it accumulates each time the state is visited, then fades away gradually when
the state is not visited, as illustrated below:

accumulating eligibility trace

times of visits to a state

At any time, the traces record which states have recently been visited,
where “recently” is defined in terms of ��. The traces are said to indicate the
degree to which each state is eligible for undergoing learning changes should
a reinforcing event occur. The reinforcing events we are concerned with are
the moment-by-moment one-step TD errors. For example, the TD error for
state-value prediction is

�t = Rt+1 + �Vt(St+1) � Vt(St). (7.6)

In the backward view of TD(�), the global TD error signal triggers propor-
tional updates to all recently visited states, as signaled by their nonzero traces:

�Vt(s) = ↵�tEt(s), for all s 2 S. (7.7)

18

On-line Tabular TD(λ)7.3. THE BACKWARD VIEW OF TD(�) 161

Initialize V (s) arbitrarily (but set to 0 if s is terminal)
Repeat (for each episode):

Initialize E(s) = 0, for all s 2 S
Initialize S
Repeat (for each step of episode):

A action given by ⇡ for S
Take action A, observe reward, R, and next state, S0

� R + �V (S0)� V (S)
E(S) E(S) + 1 (accumulating traces)
or E(S) (1� ↵)E(S) + 1 (dutch traces)
or E(S) 1 (replacing traces)
For all s 2 S:

V (s) V (s) + ↵�E(s)
E(s) ��E(s)

S S0

until S is terminal

Figure 7.7: On-line tabular TD(�).

to St. Thus the TD(�) update (7.11) reduces to the simple TD rule (6.2). This is
why that algorithm was called TD(0). In terms of Figure 7.8, TD(0) is the case in
which only the one state preceding the current one is changed by the TD error. For
larger values of �, but still � < 1, more of the preceding states are changed, but each
more temporally distant state is changed less because its eligibility trace is smaller,
as suggested by the figure. We say that the earlier states are given less credit for the
TD error.

If � = 1, then the credit given to earlier states falls only by � per step. This
turns out to be just the right thing to do to achieve Monte Carlo behavior. For
example, remember that the TD error, �t, includes an undiscounted term of Rt+1.

!t
e
t

e
t

e
t

e
t

Time

s
t

s
t+1

s
t-1

s
t-2

s
t-3

!t

St+1
St

St-1
St-2

St-3

xiv SUMMARY OF NOTATION

�t temporal-di�erence error at t (a random variable, even though not upper case)

Et(s) eligibility trace for state s at t
Et(s, a) eligibility trace for a state–action pair

et eligibility trace vector at t

� discount-rate parameter

� probability of random action in �-greedy policy

�, � step-size parameters

� decay-rate parameter for eligibility traces

xiv SUMMARY OF NOTATION

�t temporal-di�erence error at t (a random variable, even though not upper case)

Et(s) eligibility trace for state s at t
Et(s, a) eligibility trace for a state–action pair

et eligibility trace vector at t

� discount-rate parameter

� probability of random action in �-greedy policy

�, � step-size parameters

� decay-rate parameter for eligibility traces

xiv SUMMARY OF NOTATION

�t temporal-di�erence error at t (a random variable, even though not upper case)

Et(s) eligibility trace for state s at t
Et(s, a) eligibility trace for a state–action pair

et eligibility trace vector at t

� discount-rate parameter

� probability of random action in �-greedy policy

�, � step-size parameters

� decay-rate parameter for eligibility traces

xiv SUMMARY OF NOTATION

�t temporal-di�erence error at t (a random variable, even though not upper case)

Et(s) eligibility trace for state s at t
Et(s, a) eligibility trace for a state–action pair

et eligibility trace vector at t

� discount-rate parameter

� probability of random action in �-greedy policy

�, � step-size parameters

� decay-rate parameter for eligibility traces

Figure 7.8: The backward or mechanistic view. Each update depends on the current TD
error combined with eligibility traces of past events.

19

Relation of Backwards View to MC & TD(0)

Using update rule:

As before, if you set λ to 0, you get to TD(0)
If you set λ to 1, you get MC but in a better way

Can apply TD(1) to continuing tasks
Works incrementally and on-line (instead of waiting
to the end of the episode)

160 CHAPTER 7. ELIGIBILITY TRACES

a random variable denoted Et(s) 2 R+. On each step, the eligibility traces of all
non-visited states decay by ��:

Et(s)
.
= ��Et�1(s), 8s 2 S, s 6= St, (7.8)

where � is the discount rate and � is the parameter introduced in the previous section.
Henceforth we refer to � as the trace-decay parameter. What about the trace for St,
the one state visited at time t? The classical eligibility trace for St decays just like
for any state, but is then incremented by 1:

Et(St)
.
= ��Et�1(St) + 1. (7.9)

This kind of eligibility trace is called an accumulating trace because it accumulates
each time the state is visited, then fades away gradually when the state is not visited,
as illustrated as illustrated below.

accumulating eligibility trace

times of visits to a state

Eligibility traces keep a simple record of which states have been visited recently,
where “recently” is defined in terms of ��. The traces are said to indicate the degree
to which each state is eligible for undergoing learning changes should a reinforcing
event occur. The reinforcing events we are concerned with are the moment-by-
moment one-step TD errors. For example, the TD error for state-value prediction
is

�t
.
= Rt+1 + �Vt(St+1) � Vt(St). (7.10)

In the backward view of TD(�), the global TD error signal triggers proportional
updates to all recently visited states, in proportion to their eligibility traces:

�Vt(s)
.
= ↵�tEt(s), for all s 2 S. (7.11)

As always, these increments could be done on each step to form an on-line algorithm,
or saved until the end of the episode to produce an o↵-line algorithm. In either case,
equations (7.8–7.11) provide the mechanistic definition of the on-line and o↵-line
TD(�) algorithms. A complete algorithm for on-line TD(�) is given in Figure 7.7.

The backward view of TD(�) is oriented backward in time. At each moment we
look at the current TD error and assign it backward to each prior state according to
the state’s eligibility trace at that time. We might imagine ourselves riding along the
stream of states, computing TD errors, and shouting them back to the previously
visited states, as suggested by Figure 7.8. Where the TD error and traces come
together, we get the update given by (7.11).

To better understand the backward view, consider what happens at various values
of �. If � = 0, then by (7.9) all traces are zero at t except for the trace corresponding

20

Forward View = Backward View

The forward (theoretical) view of TD(λ) is equivalent
to the backward (mechanistic) view for off-line
updating

On-line updating with small α is similar

Backward updates Forward updates

algebra

166 CHAPTER 7. ELIGIBILITY TRACES

7.4 Equivalence of Forward and Backward Views

In this section we show that o↵-line TD(�), as defined mechanistically above,
achieves the same weight updates as the o↵-line �-return algorithm. In this
sense we align the forward (theoretical) and backward (mechanistic) views of
TD(�). Let �V

�

t

(S
t

) denote the update at time t of V (S
t

) according to the
�-return algorithm (7.4), and let �V

TD

t

(s) denote the update at time t of state
s according to the mechanistic definition of TD(�) as given by (7.7). Then our
goal is to show that the sum of all the updates over an episode is the same for
the two algorithms:

T�1X

t=0

�V

TD

t

(s) =
T�1X

t=0

�V

�

t

(S
t

)I
sSt , for all s 2 S, (7.8)

where I

sSt is an identity indicator function, equal to 1 if s=S

t

and equal to 0
otherwise.

First note that an accumulating eligibility trace can be written explicitly
(nonrecursively) as

Z

t

(s) =
tX

k=0

(��)t�k

I

sSk
.

Thus, the left-hand side of (7.8) can be written

T�1X

t=0

�V

TD

t

(s) =
T�1X

t=0

↵�

t

tX

k=0

(��)t�k

I

sSk

=
T�1X

k=0

↵

kX

t=0

(��)k�t

I

sSt�k

=
T�1X

t=0

↵

T�1X

k=t

(��)k�t

I

sSt�k

=
T�1X

t=0

↵I

sSt

T�1X

k=t

(��)k�t

�

k

. (7.9)

Now we turn to the right-hand side of (7.8). Consider an individual update
of the �-return algorithm:

1

↵

�V

�

t

(S
t

) = G

�

t

� V

t

(S
t

)

166 CHAPTER 7. ELIGIBILITY TRACES

7.4 Equivalence of Forward and Backward Views

In this section we show that o↵-line TD(�), as defined mechanistically above,
achieves the same weight updates as the o↵-line �-return algorithm. In this
sense we align the forward (theoretical) and backward (mechanistic) views of
TD(�). Let �V

�

t

(S
t

) denote the update at time t of V (S
t

) according to the
�-return algorithm (7.4), and let �V

TD

t

(s) denote the update at time t of state
s according to the mechanistic definition of TD(�) as given by (7.7). Then our
goal is to show that the sum of all the updates over an episode is the same for
the two algorithms:

T�1X

t=0

�V

TD

t

(s) =
T�1X

t=0

�V

�

t

(S
t

)I
sSt , for all s 2 S, (7.8)

where I

sSt is an identity indicator function, equal to 1 if s=S

t

and equal to 0
otherwise.

First note that an accumulating eligibility trace can be written explicitly
(nonrecursively) as

Z

t

(s) =
tX

k=0

(��)t�k

I

sSk
.

Thus, the left-hand side of (7.8) can be written

T�1X

t=0

�V

TD

t

(s) =
T�1X

t=0

↵�

t

tX

k=0

(��)t�k

I

sSk

=
T�1X

k=0

↵

kX

t=0

(��)k�t

I

sSt�k

=
T�1X

t=0

↵

T�1X

k=t

(��)k�t

I

sSt�k

=
T�1X

t=0

↵I

sSt

T�1X

k=t

(��)k�t

�

k

. (7.9)

Now we turn to the right-hand side of (7.8). Consider an individual update
of the �-return algorithm:

1

↵

�V

�

t

(S
t

) = G

�

t

� V

t

(S
t

)

21

On-line versus Off-line on Random Walk

Same 19 state random walk
On-line performs better over a broader range of parameters

162 CHAPTER 7. ELIGIBILITY TRACES

In passing this back k steps it needs to be discounted, like any reward in a return,
by �k, which is just what the falling eligibility trace achieves. If � = 1 and � = 1,
then the eligibility traces do not decay at all with time. In this case the method
behaves like a Monte Carlo method for an undiscounted, episodic task. If � = 1, the
algorithm is also known as TD(1).

TD(1) is a way of implementing Monte Carlo algorithms that is more general than
those presented earlier and that significantly increases their range of applicability.
Whereas the earlier Monte Carlo methods were limited to episodic tasks, TD(1)
can be applied to discounted continuing tasks as well. Moreover, TD(1) can be
performed incrementally and on-line. One disadvantage of Monte Carlo methods is
that they learn nothing from an episode until it is over. For example, if a Monte
Carlo control method takes an action that produces a very poor reward but does not
end the episode, then the agent’s tendency to repeat the action will be undiminished
during the episode. On-line TD(1), on the other hand, learns in an n-step TD way
from the incomplete ongoing episode, where the n steps are all the way up to the
current step. If something unusually good or bad happens during an episode, control
methods based on TD(1) can learn immediately and alter their behavior on that
same episode.

It is revealing to revisit the 19-state random walk example (Example 7.1) to see
how well the backward-view TD(�) algorithm does in approximating the ideal of the
forward-view �-return algorithm. The performances of on-line and o↵-line TD(�)
with accumulating traces are shown in Figure 7.9. In the o↵-line case it has been
proven that TD(�) an the �-return algorithm are equivalent, and here we see em-
pirically that the performances of o↵-line TD(�) (Figure 7.9, right) and the o↵-line
�-return algorithm (Figure 7.5, right) are identical. However, recall that the o↵-line
case is not our main focus, as all of its performance levels are generally lower and ob-
tained over a narrower range of ↵ values than can be obtained with on-line methods,
as we saw earlier for n-step methods (Figure 7.2) and �-return methods (Figure 7.5),

λ=0

λ=.4

λ=.8

λ=.9
λ=.95

λ=.975

λ=.99
λ=1

λ=.99

λ=0

λ=.4

λ=.8
λ=.9

λ=.95.975.991

On-line TD(λ), accumulating traces Off-line TD(λ), accumulating traces
≡ off-line λ-return algorithm

↵↵

RMS error
over first

10 episodes

λ=.8
λ=.9

Figure 7.9: Performances of on-line and o↵-line TD(�) with accumulating traces on the 19-
state random walk (Example 7.1). On-line is better, as are intermediate parameter values.

22

Replacing and Dutch Traces

All traces fade the same:

But increment differently!

7.4. REPLACING AND DUTCH TRACES 163

and we see now for TD(�) (Figure 7.9).

In the on-line case, the performance of TD(�) with accumulating traces (Figure 7.9,
left) is indeed much better and closer to that of the on-line �-return algorithm (Fig-
ure 7.5, left). If � = 0, then in fact it is the identical algorithm at all ↵, and if ↵
is small, then for all � it is a close approximation to the �-return algorithm by the
end of each episode. However, if both parameters are larger, for example � > 0.9
and ↵ > 0.5, then the algorithms perform substantially di↵erently: the �-return
algorithm performs a little less well whereas TD(�) is likely to be unstable. This is
not a terrible problem, as these parameter values are higher than one would want to
use anyway, but it is a weakness of the method.

7.4 Replacing and Dutch Traces

Two alternative types of eligibility traces have been proposed to address the limita-
tions of accumulating traces. All three types decay the traces of non-visited states
in the same way, that is, according to (7.8), but they di↵er in how the visited state
is incremented. The first alternative type is the replacing trace. Suppose a state is
visited and then revisited before the trace due to the first visit has fully decayed to
zero. With accumulating traces the revisit causes a further increment in the trace
(7.9), driving it greater than 1, whereas, with replacing traces, the trace is simply
reset to 1:

Et(St)
.
= 1. (7.12)

In the special case of � = 1, TD(�) with replacing traces is closely related to first-visit
Monte Carlo methods.

The second alternative type of eligibility trace, called the dutch trace, can be
viewed as intermediate between accumulating and replacing traces, depending on

times of state visits

accumulating traces

dutch traces (α = 0.5)

replacing traces

Figure 7.10: The three di↵erent kinds of traces. Accumulating traces add up each time
a state is visited, whereas replacing traces are reset to one, and dutch traces do something
in-between, depending on ↵ (here we show them for ↵ = 0.5). In all cases the traces decay
at a rate of �� per step; here we show �� = 0.8 such that the traces have a time constant
of approximately 5 steps. For a sense of step length, note that the last four visits are on
successive steps.

160 CHAPTER 7. ELIGIBILITY TRACES

a random variable denoted Et(s) 2 R+. On each step, the eligibility traces of all
non-visited states decay by ��:

Et(s)
.
= ��Et�1(s), 8s 2 S, s 6= St, (7.8)

where � is the discount rate and � is the parameter introduced in the previous section.
Henceforth we refer to � as the trace-decay parameter. What about the trace for St,
the one state visited at time t? The classical eligibility trace for St decays just like
for any state, but is then incremented by 1:

Et(St)
.
= ��Et�1(St) + 1. (7.9)

This kind of eligibility trace is called an accumulating trace because it accumulates
each time the state is visited, then fades away gradually when the state is not visited,
as illustrated as illustrated below.

accumulating eligibility trace

times of visits to a state

Eligibility traces keep a simple record of which states have been visited recently,
where “recently” is defined in terms of ��. The traces are said to indicate the degree
to which each state is eligible for undergoing learning changes should a reinforcing
event occur. The reinforcing events we are concerned with are the moment-by-
moment one-step TD errors. For example, the TD error for state-value prediction
is

�t
.
= Rt+1 + �Vt(St+1) � Vt(St). (7.10)

In the backward view of TD(�), the global TD error signal triggers proportional
updates to all recently visited states, in proportion to their eligibility traces:

�Vt(s)
.
= ↵�tEt(s), for all s 2 S. (7.11)

As always, these increments could be done on each step to form an on-line algorithm,
or saved until the end of the episode to produce an o↵-line algorithm. In either case,
equations (7.8–7.11) provide the mechanistic definition of the on-line and o↵-line
TD(�) algorithms. A complete algorithm for on-line TD(�) is given in Figure 7.7.

The backward view of TD(�) is oriented backward in time. At each moment we
look at the current TD error and assign it backward to each prior state according to
the state’s eligibility trace at that time. We might imagine ourselves riding along the
stream of states, computing TD errors, and shouting them back to the previously
visited states, as suggested by Figure 7.8. Where the TD error and traces come
together, we get the update given by (7.11).

To better understand the backward view, consider what happens at various values
of �. If � = 0, then by (7.9) all traces are zero at t except for the trace corresponding

160 CHAPTER 7. ELIGIBILITY TRACES

a random variable denoted Et(s) 2 R+. On each step, the eligibility traces of all
non-visited states decay by ��:

Et(s)
.
= ��Et�1(s), 8s 2 S, s 6= St, (7.8)

where � is the discount rate and � is the parameter introduced in the previous section.
Henceforth we refer to � as the trace-decay parameter. What about the trace for St,
the one state visited at time t? The classical eligibility trace for St decays just like
for any state, but is then incremented by 1:

Et(St)
.
= ��Et�1(St) + 1. (7.9)

This kind of eligibility trace is called an accumulating trace because it accumulates
each time the state is visited, then fades away gradually when the state is not visited,
as illustrated as illustrated below.

accumulating eligibility trace

times of visits to a state

Eligibility traces keep a simple record of which states have been visited recently,
where “recently” is defined in terms of ��. The traces are said to indicate the degree
to which each state is eligible for undergoing learning changes should a reinforcing
event occur. The reinforcing events we are concerned with are the moment-by-
moment one-step TD errors. For example, the TD error for state-value prediction
is

�t
.
= Rt+1 + �Vt(St+1) � Vt(St). (7.10)

In the backward view of TD(�), the global TD error signal triggers proportional
updates to all recently visited states, in proportion to their eligibility traces:

�Vt(s)
.
= ↵�tEt(s), for all s 2 S. (7.11)

As always, these increments could be done on each step to form an on-line algorithm,
or saved until the end of the episode to produce an o↵-line algorithm. In either case,
equations (7.8–7.11) provide the mechanistic definition of the on-line and o↵-line
TD(�) algorithms. A complete algorithm for on-line TD(�) is given in Figure 7.7.

The backward view of TD(�) is oriented backward in time. At each moment we
look at the current TD error and assign it backward to each prior state according to
the state’s eligibility trace at that time. We might imagine ourselves riding along the
stream of states, computing TD errors, and shouting them back to the previously
visited states, as suggested by Figure 7.8. Where the TD error and traces come
together, we get the update given by (7.11).

To better understand the backward view, consider what happens at various values
of �. If � = 0, then by (7.9) all traces are zero at t except for the trace corresponding

7.4. REPLACING AND DUTCH TRACES 163

and we see now for TD(�) (Figure 7.9).

In the on-line case, the performance of TD(�) with accumulating traces (Figure 7.9,
left) is indeed much better and closer to that of the on-line �-return algorithm (Fig-
ure 7.5, left). If � = 0, then in fact it is the identical algorithm at all ↵, and if ↵
is small, then for all � it is a close approximation to the �-return algorithm by the
end of each episode. However, if both parameters are larger, for example � > 0.9
and ↵ > 0.5, then the algorithms perform substantially di↵erently: the �-return
algorithm performs a little less well whereas TD(�) is likely to be unstable. This is
not a terrible problem, as these parameter values are higher than one would want to
use anyway, but it is a weakness of the method.

7.4 Replacing and Dutch Traces

Two alternative types of eligibility traces have been proposed to address the limita-
tions of accumulating traces. All three types decay the traces of non-visited states
in the same way, that is, according to (7.8), but they di↵er in how the visited state
is incremented. The first alternative type is the replacing trace. Suppose a state is
visited and then revisited before the trace due to the first visit has fully decayed to
zero. With accumulating traces the revisit causes a further increment in the trace
(7.9), driving it greater than 1, whereas, with replacing traces, the trace is simply
reset to 1:

Et(St)
.
= 1. (7.12)

In the special case of � = 1, TD(�) with replacing traces is closely related to first-visit
Monte Carlo methods.

The second alternative type of eligibility trace, called the dutch trace, can be
viewed as intermediate between accumulating and replacing traces, depending on

times of state visits

accumulating traces

dutch traces (α = 0.5)

replacing traces

Figure 7.10: The three di↵erent kinds of traces. Accumulating traces add up each time
a state is visited, whereas replacing traces are reset to one, and dutch traces do something
in-between, depending on ↵ (here we show them for ↵ = 0.5). In all cases the traces decay
at a rate of �� per step; here we show �� = 0.8 such that the traces have a time constant
of approximately 5 steps. For a sense of step length, note that the last four visits are on
successive steps.

164 CHAPTER 7. ELIGIBILITY TRACES

On-line TD(λ), dutch traces

λ=0

λ=.4
λ=.8

λ=.9

λ=.95

λ=.975
λ=.99

λ=1

λ=.95

↵

RMS error
over first

10 episodes

On-line TD(λ), replacing traces

↵

λ=0

λ=.4
λ=.8

λ=.9

λ=.95

λ=.975

λ=1 λ=.99

λ=.975

Figure 7.11: Performances of TD(�) with replacing and dutch traces on the 19-state random
walk (Example 7.1).

the step-size parameter ↵. Dutch traces are defined by

Et(St)
.
= (1 � ↵)��Et�1(St) + 1. (7.13)

Note that as ↵ approaches zero, the dutch trace becomes the accumulating trace,
and as ↵ approaches one, it becomes the replacing trace. Figure 7.10 contrasts the
three kinds of traces, showing the behavior of the dutch trace for ↵ = 1/2.

The performances of TD(�) with the two new types of traces are shown in Fig-
ure 7.11. In both cases, performance is more robust to the parameter values than
it is with accumulating traces (Figure 7.9, right). The performance with replacing
traces may be slightly better on this problem, but it is dutch traces which we would
recommend as the best state of the art. One reason for this is that replacing traces do
not generalize completely to the function approximation methods we consider in the
next part of the book. Another is that replacing traces perform significantly worse
than dutch traces on other tabular problems (van Seijen et al., 2015). Moreover, the
performance with dutch traces (above, left) achieves our goal of an on-line causal
algorithm that closely approximates the on-line �-return algorithm (Figure 7.5, left).

There is quite a bit more to say about the dutch trace, the �-return, and algo-
rithmic equivalences, but we postpone it until we have introduced linear function
approximation in Chapter 9. In this more general setting we can cover all cases in
one presentation with a simpler notation.

7.5 Sarsa(�)

How can eligibility traces be used not just for prediction, as in TD(�), but for control?
As usual, the main idea of one popular approach is simply to learn action values,
Qt(s, a), rather than state values, Vt(s). In this section we show how eligibility traces
can be combined with Sarsa in a straightforward way to produce an on-policy TD

23

Replacing and Dutch on the Random Walk

164 CHAPTER 7. ELIGIBILITY TRACES

On-line TD(λ), dutch traces

λ=0

λ=.4
λ=.8

λ=.9

λ=.95

λ=.975
λ=.99

λ=1

λ=.95

↵

RMS error
over first

10 episodes

On-line TD(λ), replacing traces

↵

λ=0

λ=.4
λ=.8

λ=.9

λ=.95

λ=.975

λ=1 λ=.99

λ=.975

Figure 7.11: Performances of TD(�) with replacing and dutch traces on the 19-state random
walk (Example 7.1).

the step-size parameter ↵. Dutch traces are defined by

Et(St)
.
= (1 � ↵)��Et�1(St) + 1. (7.13)

Note that as ↵ approaches zero, the dutch trace becomes the accumulating trace,
and as ↵ approaches one, it becomes the replacing trace. Figure 7.10 contrasts the
three kinds of traces, showing the behavior of the dutch trace for ↵ = 1/2.

The performances of TD(�) with the two new types of traces are shown in Fig-
ure 7.11. In both cases, performance is more robust to the parameter values than
it is with accumulating traces (Figure 7.9, right). The performance with replacing
traces may be slightly better on this problem, but it is dutch traces which we would
recommend as the best state of the art. One reason for this is that replacing traces do
not generalize completely to the function approximation methods we consider in the
next part of the book. Another is that replacing traces perform significantly worse
than dutch traces on other tabular problems (van Seijen et al., 2015). Moreover, the
performance with dutch traces (above, left) achieves our goal of an on-line causal
algorithm that closely approximates the on-line �-return algorithm (Figure 7.5, left).

There is quite a bit more to say about the dutch trace, the �-return, and algo-
rithmic equivalences, but we postpone it until we have introduced linear function
approximation in Chapter 9. In this more general setting we can cover all cases in
one presentation with a simpler notation.

7.5 Sarsa(�)

How can eligibility traces be used not just for prediction, as in TD(�), but for control?
As usual, the main idea of one popular approach is simply to learn action values,
Qt(s, a), rather than state values, Vt(s). In this section we show how eligibility traces
can be combined with Sarsa in a straightforward way to produce an on-policy TD

On-line TD(λ), accumulating tracesOn-line TD(λ), dutch traces

On-line λ-return Off-line λ-return
= off-line TD(λ), accumulating traces

RM
S

er
ro

r o
ve

r fi
rs

t 1
0

ep
is

od
es

 o
n

19
-s

ta
te

 ra
nd

om
 w

al
k

λ=0

λ=.4

λ=.8
λ=.9

λ=.95.975.991

λ=0

λ=.4
λ=.8

λ=.9

λ=.95

λ=.975
λ=.99

λ=1

λ=.95

On-line TD(λ), replacing tracesTrue on-line TD(λ)
= real-time λ-return

↵↵

λ=0

λ=.4
λ=.8

λ=.9

λ=.95

λ=0

λ=.4
λ=.8

λ=.9

λ=.95

λ=.975
λ=.99

λ=1

λ=.95

λ=0

λ=.4
λ=.8

λ=.9

λ=.95

λ=.975

λ=.99

λ=1

λ=.95

λ=.975

λ=1 λ=.99

λ=0

λ=.4

λ=.8

λ=.9
λ=.95

λ=.975

λ=.99
λ=1

λ=.99

λ=.975

All λ results
on the  
random walk

25

Control: Sarsa(λ)

Everything changes from
states to state-action pairs

170 CHAPTER 7. ELIGIBILITY TRACES

λT-t-1

s , a
t

1−λ

(1−λ) λ

(1−λ) λ2

Σ = 1

t

sT

Sarsa(λ)

St

ST

, At

Figure 7.10: Sarsa(�)’s backup diagram.

one full step, to the next state–action pair, the second looks ahead two steps,
and so on. A final backup is based on the complete return. The weighting of
each backup is just as in TD(�) and the �-return algorithm.

One-step Sarsa and Sarsa(�) are on-policy algorithms, meaning that they
approximate q

⇡

(s, a), the action values for the current policy, ⇡, then improve
the policy gradually based on the approximate values for the current policy.
The policy improvement can be done in many di↵erent ways, as we have seen
throughout this book. For example, the simplest approach is to use the "-
greedy policy with respect to the current action-value estimates. Figure 7.11
shows the complete Sarsa(�) algorithm for this case.

Example 7.4: Traces in Gridworld The use of eligibility traces can
substantially increase the e�ciency of control algorithms. The reason for this
is illustrated by the gridworld example in Figure 7.12. The first panel shows the
path taken by an agent in a single episode, ending at a location of high reward,
marked by the *. In this example the values were all initially 0, and all rewards
were zero except for a positive reward at the * location. The arrows in the other
two panels show which action values were strengthened as a result of this path
by one-step Sarsa and Sarsa(�) methods. The one-step method strengthens
only the last action of the sequence of actions that led to the high reward,
whereas the trace method strengthens many actions of the sequence. The
degree of strengthening (indicated by the size of the arrows) falls o↵ (according
to ��) with steps from the reward. In this example, � = 1 and � = 0.9.

7.5. SARSA(�) 169

algorithms.

7.5 Sarsa(�)

How can eligibility traces be used not just for prediction, as in TD(�), but for
control? As usual, the main idea of one popular approach is simply to learn
action values, qt(s, a), rather than state values, Vt(s). In this section we show
how eligibility traces can be combined with Sarsa in a straightforward way to
produce an on-policy TD control method. The eligibility trace version of Sarsa
we call Sarsa(�), and the original version presented in the previous chapter
we henceforth call one-step Sarsa.

The idea in Sarsa(�) is to apply the TD(�) prediction method to state–
action pairs rather than to states. Obviously, then, we need a trace not just
for each state, but for each state–action pair. Let Et(s, a) denote the trace for
state–action pair s, a. Otherwise the method is just like TD(�), substituting
state–action variables for state variables—Qt(s, a) for Vt(s) and Et(s, a) for
Et(s):

Qt+1(s, a) = Qt(s, a) + ↵�tEt(s, a), for all s, a

where

�t = Rt+1 + �Qt(St+1, At+1) � Qt(St, At)

and

Et(s, a) =

⇢
��Et�1(s, a) + 1 if s=St and a = At;
��Et�1(s, a) otherwise.

for all s, a (7.10)

Figure 7.10 shows the backup diagram for Sarsa(�). Notice the similarity to
the diagram of the TD(�) algorithm (Figure 7.3). The first backup looks ahead
one full step, to the next state–action pair, the second looks ahead two steps,
and so on. A final backup is based on the complete return. The weighting of
each backup is just as in TD(�) and the �-return algorithm.

One-step Sarsa and Sarsa(�) are on-policy algorithms, meaning that they
approximate q⇡(s, a), the action values for the current policy, ⇡, then improve
the policy gradually based on the approximate values for the current policy.
The policy improvement can be done in many di↵erent ways, as we have seen
throughout this book. For example, the simplest approach is to use the "-
greedy policy with respect to the current action-value estimates. Figure 7.11
shows the complete Sarsa(�) algorithm for this case.

8s, a

G�
t = (1� �)

T�t�1X

n=1

�n�1G(n)
t + �T�t�1Gt (1)

G�
t = (1� 1)

T�t�1X

n=1

1

n�1G(n)
t + 1

T�t�1Gt = Gt (2)

G�
t = (1� 0)

T�t�1X

n=1

0

n�1G(n)
t + 0

T�t�1Gt = G(1)

t (3)

R S A(s)
Ea[a]

! = s
0

, a
0

, s
1

, a
1

, . . .

The other random variables are a function of this sequence. The transitional

target rt+1

is a function of st, at, and st+1

. The termination condition �t,

terminal target zt, and prediction yt, are functions of st alone.

R(n)
t = rt+1

+ �t+1

zt+1

+ (1� �t+1

)R(n�1)

t+1

R(0)

t = yt

R�
t = (1� �)

1X

n=1

�n�1R(n)
t

⇢t =
⇡(st, at)

b(st, at)

�wo↵

(!) = �won

(!)
1Y

i=1

⇢i

�wt = ↵t(CtR
�
t � yt)rwyt

�wt = ↵t(
¯R�
t � yt)rwyt

1

Demo

26

27

Sarsa(λ) Algorithm

170 CHAPTER 7. ELIGIBILITY TRACES

λT-t-1

s , a
t

1−λ

(1−λ) λ

(1−λ) λ2

Σ = 1

t

sT

Sarsa(λ)

St

ST

, At

Figure 7.10: Sarsa(�)’s backup diagram.

Initialize Q(s, a) arbitrarily, for all s 2 S, a 2 A(s)
Repeat (for each episode):

E(s, a) = 0, for all s 2 S, a 2 A(s)
Initialize S, A
Repeat (for each step of episode):

Take action A, observe R, S0

Choose A

0 from S

0 using policy derived from Q (e.g., "-greedy)
� R+ �Q(S0

, A

0)�Q(S,A)
E(S,A) E(S,A) + 1
For all s 2 S, a 2 A(s):

Q(s, a) Q(s, a) + ↵�E(s, a)
E(s, a) ��E(s, a)

S S

0; A A

0

until S is terminal

Figure 7.11: Tabular Sarsa(�).

28

Sarsa(λ) Gridworld Example

With one trial, the agent has much more information about how to
get to the goal

not necessarily the best way
Can considerably accelerate learning

7.5. SARSA(�) 171

Initialize Q(s, a) arbitrarily, for all s 2 S, a 2 A(s)
Repeat (for each episode):

Z(s, a) = 0, for all s 2 S, a 2 A(s)
Initialize S, A
Repeat (for each step of episode):

Take action A, observe R, S0

Choose A

0 from S

0 using policy derived from Q (e.g., "-greedy)
� R+ �Q(S0

, A

0)�Q(S,A)
Z(S,A) Z(S,A) + 1
For all s 2 S, a 2 A(s):

Q(s, a) Q(s, a) + ↵�Z(s, a)
Z(s, a) ��Z(s, a)

S S

0; A A

0

until S is terminal

Figure 7.11: Tabular Sarsa(�).

Path taken
Action values increased

by one-step Sarsa
Action values increased

by Sarsa(!) with !=0.9

Figure 7.12: Gridworld example of the speedup of policy learning due to the
use of eligibility traces.

29

Watkins’s Q(λ)

How can we extend this to
Q-learning?
If you mark every state
action pair as eligible, you
backup over non-greedy
policy
Watkins’s: Zero out
eligibility trace after a non-
greedy action. Do max
when backing up at first
non-greedy choice.

7.6. Q(�) 173

1!"

(1!") "

(1!") "
2

Watkins's Q(")

OR

first
non-greedy
action"

n!1

s , a
t t

s
t+n

"
T-t-1

St

St-n

, At

Figure 7.13: The backup diagram for Watkins’s Q(�). The series of component
backups ends either with the end of the episode or with the first nongreedy
action, whichever comes first.

whenever an exploratory (nongreedy) action is taken. The trace update is
best thought of as occurring in two steps. First, the traces for all state–action
pairs are either decayed by �� or, if an exploratory action was taken, set to 0.
Second, the trace corresponding to the current state and action is incremented
by 1. The overall result is

Z

t

(s, a) = I

sSt · I

aAt +

⇢
��Z

t�1(s, a) if Q

t�1(St

, A

t

) = max
a

Q

t�1(St

, a);
0 otherwise,

where, as before, I

xy

is an identity indicator function, equal to 1 if x = y and
0 otherwise. The rest of the algorithm is defined by

Q

t+1(s, a) = Q

t

(s, a) + ↵�

t

Z

t

(s, a), 8s 2 S, a 2 A(s)

where

�

t

= R

t+1 + � max
a

0
Q

t

(S
t+1, a

0) � Q

t

(S
t

, A

t

).

Figure 7.14 shows the complete algorithm in pseudocode.

Unfortunately, cutting o↵ traces every time an exploratory action is taken
loses much of the advantage of using eligibility traces. If exploratory actions

Zt(s, a) =

8
<

:

1 + ��Zt�1

(s, a) if St = s, At = a, and At was greedy;

0 if St = s, At = a, and At was not greedy;

��Zt�1

(s, a) for all other s, a;

8s, a

G�
t = (1� �)

T�t�1X

n=1

�n�1G(n)
t + �T�t�1Gt (1)

G�
t = (1� 1)

T�t�1X

n=1

1

n�1G(n)
t + 1

T�t�1Gt = Gt (2)

G�
t = (1� 0)

T�t�1X

n=1

0

n�1G(n)
t + 0

T�t�1Gt = G(1)

t (3)

R S A(s)
Ea[a]

! = s
0

, a
0

, s
1

, a
1

, . . .

The other random variables are a function of this sequence. The transitional

target rt+1

is a function of st, at, and st+1

. The termination condition �t,

terminal target zt, and prediction yt, are functions of st alone.

R(n)
t = rt+1

+ �t+1

zt+1

+ (1� �t+1

)R(n�1)

t+1

R(0)

t = yt

R�
t = (1� �)

1X

n=1

�n�1R(n)
t

⇢t =
⇡(st, at)

b(st, at)

�wo↵

(!) = �won

(!)
1Y

i=1

⇢i

�wt = ↵t(CtR
�
t � yt)rwyt

�wt = ↵t(
¯R�
t � yt)rwyt

1

7.6. Q(�) 173

1!"

(1!") "

(1!") "
2

Watkins's Q(")

OR

first
non-greedy
action"

n!1

s , a
t t

s
t+n

"
T-t-1

St

St-n

, At

Figure 7.13: The backup diagram for Watkins’s Q(�). The series of component
backups ends either with the end of the episode or with the first nongreedy
action, whichever comes first.

whenever an exploratory (nongreedy) action is taken. The trace update is
best thought of as occurring in two steps. First, the traces for all state–action
pairs are either decayed by �� or, if an exploratory action was taken, set to 0.
Second, the trace corresponding to the current state and action is incremented
by 1. The overall result is

Z

t

(s, a) = I

sSt · I

aAt +

⇢
��Z

t�1(s, a) if Q

t�1(St

, A

t

) = max
a

Q

t�1(St

, a);
0 otherwise,

where, as before, I

xy

is an identity indicator function, equal to 1 if x = y and
0 otherwise. The rest of the algorithm is defined by

Q

t+1(s, a) = Q

t

(s, a) + ↵�

t

Z

t

(s, a), 8s 2 S, a 2 A(s)

where

�

t

= R

t+1 + � max
a

0
Q

t

(S
t+1, a

0) � Q

t

(S
t

, A

t

).

Figure 7.14 shows the complete algorithm in pseudocode.

Unfortunately, cutting o↵ traces every time an exploratory action is taken
loses much of the advantage of using eligibility traces. If exploratory actions

7.6. Q(�) 173

1!"

(1!") "

(1!") "
2

Watkins's Q(")

OR

first
non-greedy
action"

n!1

s , a
t t

s
t+n

"
T-t-1

St

St-n

, At

Figure 7.13: The backup diagram for Watkins’s Q(�). The series of component
backups ends either with the end of the episode or with the first nongreedy
action, whichever comes first.

whenever an exploratory (nongreedy) action is taken. The trace update is
best thought of as occurring in two steps. First, the traces for all state–action
pairs are either decayed by �� or, if an exploratory action was taken, set to 0.
Second, the trace corresponding to the current state and action is incremented
by 1. The overall result is

Z

t

(s, a) = I

sSt · I

aAt +

⇢
��Z

t�1(s, a) if Q

t�1(St

, A

t

) = max
a

Q

t�1(St

, a);
0 otherwise,

where, as before, I

xy

is an identity indicator function, equal to 1 if x = y and
0 otherwise. The rest of the algorithm is defined by

Q

t+1(s, a) = Q

t

(s, a) + ↵�

t

Z

t

(s, a), 8s 2 S, a 2 A(s)

where

�

t

= R

t+1 + � max
a

0
Q

t

(S
t+1, a

0) � Q

t

(S
t

, A

t

).

Figure 7.14 shows the complete algorithm in pseudocode.

Unfortunately, cutting o↵ traces every time an exploratory action is taken
loses much of the advantage of using eligibility traces. If exploratory actions

170 CHAPTER 7. ELIGIBILITY TRACES

λT-t-1

s , a
t

1−λ

(1−λ) λ

(1−λ) λ2

Σ = 1

t

sT

Sarsa(λ)

St

ST

, At

Figure 7.10: Sarsa(�)’s backup diagram.

Initialize Q(s, a) arbitrarily, for all s 2 S, a 2 A(s)
Repeat (for each episode):

E(s, a) = 0, for all s 2 S, a 2 A(s)
Initialize S, A
Repeat (for each step of episode):

Take action A, observe R, S0

Choose A

0 from S

0 using policy derived from Q (e.g., "-greedy)
� R+ �Q(S0

, A

0)�Q(S,A)
E(S,A) E(S,A) + 1
For all s 2 S, a 2 A(s):

Q(s, a) Q(s, a) + ↵�E(s, a)
E(s, a) ��E(s, a)

S S

0; A A

0

until S is terminal

Figure 7.11: Tabular Sarsa(�).

170 CHAPTER 7. ELIGIBILITY TRACES

λT-t-1

s , a
t

1−λ

(1−λ) λ

(1−λ) λ2

Σ = 1

t

sT

Sarsa(λ)

St

ST

, At

Figure 7.10: Sarsa(�)’s backup diagram.

Initialize Q(s, a) arbitrarily, for all s 2 S, a 2 A(s)
Repeat (for each episode):

E(s, a) = 0, for all s 2 S, a 2 A(s)
Initialize S, A
Repeat (for each step of episode):

Take action A, observe R, S0

Choose A

0 from S

0 using policy derived from Q (e.g., "-greedy)
� R+ �Q(S0

, A

0)�Q(S,A)
E(S,A) E(S,A) + 1
For all s 2 S, a 2 A(s):

Q(s, a) Q(s, a) + ↵�E(s, a)
E(s, a) ��E(s, a)

S S

0; A A

0

until S is terminal

Figure 7.11: Tabular Sarsa(�).

170 CHAPTER 7. ELIGIBILITY TRACES

λT-t-1

s , a
t

1−λ

(1−λ) λ

(1−λ) λ2

Σ = 1

t

sT

Sarsa(λ)

St

ST

, At

Figure 7.10: Sarsa(�)’s backup diagram.

Initialize Q(s, a) arbitrarily, for all s 2 S, a 2 A(s)
Repeat (for each episode):

E(s, a) = 0, for all s 2 S, a 2 A(s)
Initialize S, A
Repeat (for each step of episode):

Take action A, observe R, S0

Choose A

0 from S

0 using policy derived from Q (e.g., "-greedy)
� R+ �Q(S0

, A

0)�Q(S,A)
E(S,A) E(S,A) + 1
For all s 2 S, a 2 A(s):

Q(s, a) Q(s, a) + ↵�E(s, a)
E(s, a) ��E(s, a)

S S

0; A A

0

until S is terminal

Figure 7.11: Tabular Sarsa(�).

30

Watkins’s Q(λ)

7.6. Q(�) 173

1!"

(1!") "

(1!") "
2

Watkins's Q(")

OR

first
non-greedy
action"

n!1

s , a
t t

s
t+n

"
T-t-1

St

St-n

, At

Figure 7.13: The backup diagram for Watkins’s Q(�). The series of component
backups ends either with the end of the episode or with the first nongreedy
action, whichever comes first.

Initialize Q(s, a) arbitrarily, for all s 2 S, a 2 A(s)
Repeat (for each episode):

E(s, a) = 0, for all s 2 S, a 2 A(s)
Initialize S, A
Repeat (for each step of episode):

Take action A, observe R, S0

Choose A

0 from S

0 using policy derived from Q (e.g., "-greedy)
A

⇤ argmaxa Q(S0
, a) (if A0 ties for the max, then A

⇤ A

0)
� R+ �Q(S0

, A

⇤)�Q(S,A)
E(S,A) E(S,A) + 1
For all s 2 S, a 2 A(s):

Q(s, a) Q(s, a) + ↵�E(s, a)
If A0 = A

⇤, then E(s, a) ��E(s, a)
else E(s, a) 0

S S

0; A A

0

until S is terminal

Figure 7.14: Tabular version of Watkins’s Q(�) algorithm.

31

Replacing Traces Example

Same 19 state random walk task as before
Replacing traces perform better than accumulating traces over
more values of λ176 CHAPTER 7. ELIGIBILITY TRACES

0.2

0.3

0.4

0.5

0 0.2 0.4 0.6 0.8 1

!

accumulating
traces

replacing
traces

RMS error
at best "

Figure 7.17: Error as a function of � on a 19-state random walk task. These
data are using the best value of ↵ for each value of �. The error is averaged
over all 19 states and the first 20 trials of 100 di↵erent runs.

Prediction or control algorithms using replacing traces are often called
replace-trace methods. Although replacing traces are only slightly di↵erent
from accumulating traces, they can produce a significant improvement in learn-
ing rate. Figure 7.17 compares the performance of conventional and replace-
trace versions of TD(�) on the 19-state random walk prediction task. Other
examples for a slightly more general case are given in Figure 9.10.

Example 7.5 Figure 7.18 shows an example of the kind of task that is di�cult
for control methods using accumulating eligibility traces. All rewards are zero
except on entering the terminal state, which produces a reward of +1. From
each state, selecting the right action brings the agent one step closer to the
terminal reward, whereas the wrong (upper) action leaves it in the same state
to try again. The full sequence of states is long enough that one would like
to use long traces to get the fastest learning. However, problems occur if long
accumulating traces are used. Suppose, on the first episode, at some state,
s, the agent by chance takes the wrong action a few times before taking the
right action. As the agent continues, the trace Z(s, wrong) is likely to be
larger than the trace Z(s, right). The right action was more recent, but the
wrong action was selected more times. When reward is finally received, then,
the value for the wrong action is likely to go up more than the value for the
right action. On the next episode the agent will be even more likely to go
the wrong way many times before going right, making it even more likely
that the wrong action will have the larger trace. Eventually, all of this will be
corrected, but learning is significantly slowed. With replacing traces, on the
other hand, this problem never occurs. No matter how many times the wrong

32

Why Replacing Traces?

Replacing traces can significantly speed learning

They can make the system perform well for a broader set of
parameters

Accumulating traces can do poorly on certain types of tasks

Why is this task particularly onerous for
accumulating traces?

7.7. REPLACING TRACES 177

right

+1

wrong

right

wrong

right

wrong

right

wrong

right

wrong

Figure 7.18: A simple task that causes problems for control methods using
accumulating traces.

action is taken, its eligibility trace is always less than that for the right action
after the right action has been taken.

There is an interesting relationship between replace-trace methods and
Monte Carlo methods in the undiscounted case. Just as conventional TD(1) is
related to the every-visit MC algorithm, so replace-trace TD(1) is related to
the first-visit MC algorithm. In particular, the o↵-line version of replace-trace
TD(1) is formally identical to first-visit MC (Singh and Sutton, 1996). How,
or even whether, these methods and results extend to the discounted case is
unknown.

There are several possible ways to generalize replacing eligibility traces for
use in control methods. Obviously, when a state is revisited and a new action
is selected, the trace for that action should be reset to 1. But what of the
traces for the other actions for that state? The approach recommended by
Singh and Sutton (1996) is to set the traces of all the other actions from the
revisited state to 0. In this case, the state–action traces are updated by the
following instead of (7.10):

Z

t

(s, a) =

8
<

:

1 if s=S

t

and a=A

t

;
0 if s=S

t

and a 6= A

t

;
��Z

t�1(s, a) if s 6= S

t

.
for all s, a (7.12)

Note that this variant of replacing traces works out even better than the orig-
inal replacing traces in the example task. Once the right action has been
selected, the wrong action is left with no trace at all. The results shown in
Figure 9.10 were obtained using this kind of replacing trace.

Exercise 7.6 In Example 7.5, suppose from state s the wrong action is taken
twice before the right action is taken. If accumulating traces are used, then
how big must the trace parameter � be in order for the wrong action to end
up with a larger eligibility trace than the right action?

Exercise 7.7 (programming) Program Example 7.5 and compare accumulate-
trace and replace-trace versions of Sarsa(�) on it, for � = 0.9 and a range of ↵

Interim TD(λ) Forward View

At each time t, you can only see the
data up to time t

so you must bootstrap at time t
However you can go back and redo
all previous updates at times k < t
TD(λ) is equivalent to this

exactly under off-line updating
approximately under online

33

Tim
e

r
t+3

r
t+2

r
t+1

r
T

s
t+1

s
t+2

s
t+3

s
tSk

Sk+2

Sk+3

St
Rt

Rk+3

Rk+2

Rk

. . .
Rk+1 Sk+1

Interim TD(�) backup

Ak

Rk+1

Sk+1

Ak+1

Rk+2

Sk+2

Rt

At�1

�t�k�1

1� �

(1� �)�

Sk

St
(1� �)�2

True Online TD(λ)
A new algorithm that more truly achieves the goals of
TD(λ) under online updating

achieves the interim TD(λ) forward view exactly,  
even under online updating, for any λ, 𝜸

Not restricted to episodic problems
Extends immediately to function approximation
Appears to perform better than both accumulating and
replacing traces (“enhanced” traces)
Tabular version:

34

et = ��
�
I � ↵�t�

>
t

�
et�1 + �t

et = ��et�1 +
�
1� ↵��(�>

t et�1)
�
�t

�t = Rt+1 + ��>
t+1✓t � �>

t ✓t�1

✓t+1 = ✓t + ↵�tet + ↵
�
�>

t (✓t�1 � ✓t)
�
�t

✓t+1 = ✓t + ↵�tet + ↵�t�
>
t (✓t�1 � ✓t)

et(i) = ��et�1(i) +
�
1� ↵��(�>

t et�1)
�
�(i)

�t = Rt+1 + ��>
t+1✓t � �>

t ✓t�1

✓t+1(i) = ✓t(i) + ↵�tet(i) + ↵
�
�>

t (✓t�1 � ✓t)
�
�t(i)

et = ��et�1 + ↵t

�
1� ��(�>

t et�1)
�
�t

�t = Rt+1 + ��>
t+1✓t � �>

t ✓t�1

✓t+1 = ✓t + �tet + ↵t

�
�>

t (✓t�1 � ✓t)
�
�t

Et(s) = ��Et�1(s) + (if s = St) 1� ↵��Et�1(s)

�t = Rt+1 + �Vt(St+1)� Vt�1(St)

Vt+1(s) = Vt(s) + ↵�tEt(s) + (if s = St) ↵(Vt�1(St)� Vt(St))

v0 ! v1 ! · · · ! vk ! vk+1 ! · · · ! v⇡

v⇡(s) =
X

a

⇡(a|s)
X

s0,r

�(s0, r|s, a)
h
r + �v⇡(s

0
)

i

v⇤(s) = max

a

X

s0,r

�(s0, r|s, a)
h
r + �v⇤(s

0
)

i

q⇤(s, a) =
X

s0,r

�(s0, r|s, a)
h
r + �max

a0
q⇤(s

0, a0)
i

q⇡(s, a) =
X

s0,r

�(s0, r|s, a)
h
r + �

X

a0

⇡(a0|s0)q⇡(s0, a0)
i

i

35

More Replacing Traces

Off-line replacing trace TD(1) is identical to first-visit
MC

Extension to action-values:
When you revisit a state, what should you do with
the traces for the other actions?
Perhaps you should set them to zero:

But it is not clear that this is a good idea in all

7.8. IMPLEMENTATION ISSUES 177

the first-visit MC algorithm. In particular, the o↵-line version of replace-trace
TD(1) is formally identical to first-visit MC (Singh and Sutton, 1996). How,
or even whether, these methods and results extend to the discounted case is
unknown.

There are several possible ways to generalize replacing eligibility traces for
use in control methods. Obviously, when a state is revisited and a new action
is selected, the trace for that action should be reset to 1. But what of the
traces for the other actions for that state? The approach recommended by
Singh and Sutton (1996) is to set the traces of all the other actions from the
revisited state to 0. In this case, the state–action traces are updated by the
following instead of (7.10):

Et(s, a) =

8
<

:

1 if s=St and a=At;
0 if s=St and a 6= At;
��Et�1(s, a) if s 6= St.

for all s, a (7.12)

Note that this variant of replacing traces works out even better than the orig-
inal replacing traces in the example task. Once the right action has been
selected, the wrong action is left with no trace at all. The results shown in
Figure 9.10 were obtained using this kind of replacing trace.

Exercise 7.6 In Example 7.5, suppose from state s the wrong action is taken
twice before the right action is taken. If accumulating traces are used, then
how big must the trace parameter � be in order for the wrong action to end
up with a larger eligibility trace than the right action?

Exercise 7.7 (programming) Program Example 7.5 and compare accumulate-
trace and replace-trace versions of Sarsa(�) on it, for � = 0.9 and a range of ↵
values. Can you empirically demonstrate the claimed advantage of replacing
traces on this example?

⇤Exercise 7.8 Draw a backup diagram for Sarsa(�) with replacing traces.

7.8 Implementation Issues

It might at first appear that methods using eligibility traces are much more
complex than one-step methods. A naive implementation would require every
state (or state–action pair) to update both its value estimate and its eligibility
trace on every time step. This would not be a problem for implementations
on single-instruction, multiple-data parallel computers or in plausible neural
implementations, but it is a problem for implementations on conventional serial
computers. Fortunately, for typical values of � and � the eligibility traces of

36

Implementation Issues with Traces

Could require much more computation
But most eligibility traces are VERY close to zero
Really only need to update those

In practice increases computation by only a small
multiple

37

Variable λ

Can generalize to variable λ

Here λ is a function of time
Could define

€

λt = λ(st) or λt = λ
t
τ

178 CHAPTER 7. ELIGIBILITY TRACES

almost all states are almost always nearly zero; only those that have recently
been visited will have traces significantly greater than zero. Only these few
states really need to be updated because the updates at the others will have
essentially no e↵ect.

In practice, then, implementations on conventional computers keep track
of and update only the few states with nonzero traces. Using this trick, the
computational expense of using traces is typically a few times that of a one-
step method. The exact multiple of course depends on � and � and on the
expense of the other computations. Cichosz (1995) has demonstrated a fur-
ther implementation technique that further reduces complexity to a constant
independent of � and �. Finally, it should be noted that the tabular case is
in some sense a worst case for the computational complexity of traces. When
function approximation is used (Chapter 9), the computational advantages of
not using traces generally decrease. For example, if artificial neural networks
and backpropagation are used, then traces generally cause only a doubling of
the required memory and computation per step.

Exercise 7.9 Write pseudocode for an implementation of TD(�) that up-
dates only value estimates for states whose traces are greater than some small
positive constant.

⇤7.9 Variable �

The �-return can be significantly generalized beyond what we have described
so far by allowing � to vary from step to step, that is, by redefining the trace
update as

Et(s) =

⇢
��tEt�1(s) if s 6=St;
��tEt�1(s) + 1 if s=St,

where �t denotes the value of � at time t. This is an advanced topic because
the added generality has never been used in practical applications, but it is
interesting theoretically and may yet prove useful. For example, one idea is to
vary � as a function of state: �t = �(St). If a state’s value estimate is believed
to be known with high certainty, then it makes sense to use that estimate fully,
ignoring whatever states and rewards are received after it. This corresponds to
cutting o↵ all the traces once this state has been reached, that is, to choosing
the � for the certain state to be zero or very small. Similarly, states whose
value estimates are highly uncertain, perhaps because even the state estimate
is unreliable, can be given �s near 1. This causes their estimated values to
have little e↵ect on any updates. They are “skipped over” until a state that is

38

Conclusions regarding Eligibility Traces

Provide an efficient, incremental way to combine Monte
Carlo (MC) and temporal-difference (TD) learning
methods

Includes advantages of MC (can deal with lack of
Markov property)
Includes advantages of TD (using TD error,
bootstrapping)

Can achieve MC behavior even on non-episodic
problems
Can significantly speed learning
Extends to control in on-policy (Sarsa(λ)) and semi-off-
policy (Q(λ)) forms
Three varieties: accumulating, replacing, and new

questions?

39

TD(λ) algorithm/model/neuron

wiei

˙ w i ~ δ ⋅ei

xi

Reward

δ
States
or
Features Value of state

 or action

wi ⋅ xi
i
∑

TD
Error

TD
Error

Eligibility
Trace

λ

