Eligibility Traces

Unifying Monte Carlo and TD

key algorithms: TD(A), Sarsa(A), Q(A)

Unified View

width

of backup ’ D .
Temporal- ynamic
difference programming
learning

height
(depth)
of backup

Exhaustive

Monte ., search

Carlo

N-step TD Prediction

@ Idea: Look farther into the future when you do TD
backup (1, 2, 3, ..., n steps)

TD (1-step) 2-step 3-step n-step Monte Carlo

O O O O
® ¢ ® ®
O O oo O oo O
® ¢ ® ®
O O O O

® [[

O : O

Mathematics of N-step TD Prediction

@ Monte Carlo: Gy = Riy1 +yRiy2 + vV Riyzs + -+ 1Ry

o TD: G = Ry +Vi(Sis1)

@ Use V; to estimate remaining return

@ n-step TD:
@ 2 step return: G* = Ry 1 +vRiya + 72 Vi(Sis2)

@ n-step return: G\™ = R,y 1 + vRipo + 72+ + 9" Rysn + 7" Vi(Spin)

Forward View of TD(\)

@ Look forward from each state to determine update from
future states and rewards:

~

Learning with n-step Backups

@ Backup computes an increment:
AS) = alGY = VS| Aus) = 0,95 # 5,

@ Then,

@ Online updating:
Vit1(s) = Vi(s) + Au(s), Vs €S

e Off-line updating:

T—1
V(s)«<V(s)+ > Aus) VseS
t=0

Error-reduction property

@ Error reduction property of n-step returns

max [)‘S —s} —‘UW(S)‘ < A" max“/}(s) — vr($)
S
N AN
Y Y
Maximum error using n-step return Maximum error using V

@ Using this, you can show that n-step methods converge

Random Walk Examples

0 0 0 0 0 1
B—®=-—@—C0—0=-—6—0

start

@ How does 2-step TD work here?
e How about 3-step TD?

A Larger Example — 19-state Random Walk

On-line n-step TD methods

055 | 512

05}t QY

045

RMS error

over first 04l

10 episodes

035 F

03

025}

e 012

Off-line n-step TD methods

/ n=64

oL/ /128

))

n=8

0 01 0.2 0.3

@ On-line 1s better than off-line

@ An intermediate n 1s best

@ Do you think there is an optimal »n?

for every task?

0

Averaging N-step Returns

@ n-step methods were introduced to help A complex backup
with TD(A) understanding

e Idea: backup an average of several returns

@ e.g. backup half of 2-step and half of
4-step

N | =

2 4
L6 + "

@ Called a complex backup

N[

@ Draw each component

@ Label with the weights for that
component

10

Forward View of TD(\)

TD(A), A-return

e TD(M) is a method for O O
averaging all n-step © ®
backups O O

e weight by A7l (time 1-M ° °
since visitation
) O O
@ A-return: N (1) 2 I
G =1-1Y aigh O
n=1 (1-1) M2

e Backup using A-return:

AS) = alG) Vs 2

11

O

()
—/

()
—/

A-return Weighting Function

weight given to
el \ the 3-step return total area = 1

decay by A

weight given to
actual, final return

Time —

T—t—1
Gy = (1-N) a6+ AT,

n=1

- ~ / -

Until termination After termination

12

Relation to TD(0) and MC

@ The A-return can be rewritten as:

T—t—1

Gy = 1-0 alel” + NG,
n=1

g ~ s \ _J

Until termination After termination
e If A=1, you get MC:
T—t—1
Gy = (1-1) Y 1"'aY + 176, = G

n=1

e If A =0, you get TD(0)

T—t—1

Gy = (1-0 > olgM + o7 lG, = GyY
n=1

Forward View of TD(\)

@ Look forward from each state to determine update from
future states and rewards:

~

14

A-return on the Random Walk

On-line A-return algorithm Off-line A-return algorithm
055 = off line TD()), accumulating traces
/ A=.99
05}
0.45 i))
RMS error 2=.99 /
over first g4l =4
10 episodes
035+
A=.9
03F
025},) ¢) . F, . . .
0 0.2 04 06 08 1 0 0.1 0.2 03
& Q

@ On-line >> Off-line
@ Intermediate values of A best

@ A-return better than n-step return

15

Backward View

0 = Rip1 +Vi(Se+1) — Vi(Sy)
AVi(s) = ady Ey(s)

e Shout 0, backwards over time

@ The strength of your voice decreases with temporal
distance by YA

16

Backward View of TD(\)

@ The forward view was for theory

@ The backward view 1s for mechanism

e New variable called eligibility trace E;(s) € R*

@ On each step, decay all traces by YA and increment
the trace for the current state by 1

® Accumulating trace

_ YAE;_1(s) if s 5¢;
Et(S) - { ’Y)\Et_l(S) + 1 if SZSt,

accumulating eligibility trace

times of visits to a state

17

On-line Tabular TD(M)

Initialize V (s) arbitrarily (but set to 0 if s is terminal)
Repeat (for each episode):
Initialize F(s) =0, for all s € 8
Initialize S
Repeat (for each step of episode):
A <+ action given by m for S
Take action A, observe reward, R, and next state, S’

5« R+~V(S") — V(S)

E(S) <« E(S)+1 (accumulating traces)
or BE(S)+ (1—-a)E(S)+1 (dutch traces)

or E(S) + 1 (replacing traces)

For all s € &:

V(s) «+ V(s)+adE(s)
E(s) < v\E(s)
S« 5

until S is terminal

18

Relation of Backwards View to MC & TD(0)

e Using update rule:
AVi(s) = ads Ey(s)

@ As before, if you set A to 0, you get to TD(0)
e If you set A to 1, you get MC but in a better way
@ Can apply TD(1) to continuing tasks

@ Works incrementally and on-line (instead of waiting
to the end of the episode)

10

Forward View = Backward View

@ The forward (theoretical) view of TD(A) is equivalent
to the backward (mechanistic) view for off-line
updating

T—1
Z AVIP(s) =) AVM(Si) s,
t=0
Y \Z ~ J
Backward updates Forward updates

@algebra

T-1
Zoz]sgt Z (Y) k L5,
k=t

@ On-line undatine with small o 1s similar

20

On-line versus Off-line on Random Walk

On-line TD()), accumulating traces Off-line TD(}), accumulating traces
) = off-line A-return algorithm

0551, 14
' /.99
“':\
05F | ?
045 F
RMS error
over first o4l
10 episodes

035+

03}

0.25 -, , >\=8 ,

@ Same 19 state random walk

@ On-line performs better over a broader range of parameters

21

Replacing and Dutch Traces

@ All traces fade the same:
Ei(s) =yAEi_1(s), Vs € 8,5 # S
@ But increment differently!

| | | | times of state visits

| |

J\ \K accumulating traces F;(S;) = YA FE;—1(S) + 1

\\ \I\N\ dutch traces F;(Sy) = (1 — a)yAEi—1(S5;) + 1
S~ W\k replacing traces FE;(S;) =1

[[

29

Replacing and Dutch on the Random Walk

0.55
05F

045

RMS error

over first o4l

10 episodes

035 F

03 F

025

On-line TD(}), replacing traces
A=1,

'/ 1=.99

On-line TD(}), dutch traces

)
=975 FW\/

0 0.2 04 0.6 0.8 1

73

On-line A-return Off-line A-return
= off-line TD(A), accumulating traces

0.55
05
045

04

All A results
on the
random walk

T———

0.35

=9
03

0.25

1 1 1)

0 01 0.2 03

0.55

05

0.45

04

0.35

03

0.25

True on-line TD(}) On-line TD()), replacing traces

. = real-time A-return =1/
/=

05 180 NN ’\=.975
0.45

04

RMS error over first 10 episodes on 19-state random walk

035

03

0.25

Control: Sarsa()\)

Sarsa(A)
e Everything changes from - S A
states to state-action pairs %
1\
(1-2) &
Qii1(s,a) = Q(s,a) + ady Ey(s,a), Vs, a
(1-1) A2
where L
0 = Rip1 +vQi(Siq1, Ary1) — Qu(St, Ay) 2=) - o
x
and
| AAEi(s,a)+ 1 if s=5; and a = Ay;
Ei(s,0) = { YAE;_1(s,a) otherwise. tor all 5,4

75

Demo

76

Sarsa(A) Algorithm

Initialize Q(s, a) arbitrarily, for all s € §,a € A(s)
Repeat (for each episode):
E(s,a) =0, for all s € §,a € A(s)
Tnitialize S, A
Repeat (for each step of episode):
Take action A, observe R, S’
Choose A’ from S’ using policy derived from @Q (e.g., e-greedy)
5+ R+~Q(S', A —Q(S, A)
E(S,A)« E(S5,A)+1
For all s € §,a € A(s):
Q(s,a) <+ Q(s,a) + ad E(s,a)
E(s,a) < vAE(s,a)
S+ S5 A+ A

until S is terminal

27

Sarsa()) Gridworld Example

Action values increased Action values increased
Path taken by one-step Sarsa by Sarsa()) with A=0.9
pieial’
4
4 ¥
- - *
¥ * | *| |y
A J <=

@ With one trial, the agent has much more information about how to
get to the goal

@ not necessarily the best way

@ Can considerably accelerate learning

78

Watkins’s Q(A\)

@ How can we extend this to
Q-learning?

e If you mark every state
action pair as eligible, you
backup over non-greedy
policy

e Watkins’s: Zero out

eligibility trace after a non-
greedy action. Do max
when backing up at first

Zi(s,a) =
YAE;, _1(s,a)

Qrr1(s,a) = Qu(s,a) + ad Ei(s, a),

0r = Ryp1 + Y max Qi (Sp41,0a")

non—?rebd‘yvélEjiaéS, a) if Sy =s, A

Watkins's Q(A

- S, A

;

1-2
(1-2) A

(1=0) 2

non-greedy
action

é /gé\ v
-«—— first
-1

= a, and A; was greedy;

0 if S; = s, Ay = a, and A; was not greedy;
for all other s, a;

Vs € 8,a € A(s)

— Q(Sr, Ar)

20

Watkins’s Q(A\)

Initialize Q(s, a) arbitrarily, for all s € §,a € A(s)
Repeat (for each episode):
E(s,a) =0, for all s € 8§,a € A(s)
Initialize S, A
Repeat (for each step of episode):
Take action A, observe R, S’
Choose A’ from S’ using policy derived from Q (e.g., e-greedy)
A* «+ argmax, Q(5’,a) (if A’ ties for the max, then A* + A')
d+— R+~Q(S", A*) —Q(S, A)
E(S,A) « E(S,A)+1
For all s € 8,a € A(s):
Q(s,a) + Q(s,a) + ad E(s,a)
If A" = A* then E(s,a) < YAE(s,a)
else E(s,a) < 0
S+ S A+ A

until S is terminal

30

Replacing Traces Example

@ Same 19 state random walk task as before

@ Replacing traces perform better than accumulating traces over
more values of A

0.5
Q
0
0.4 ;
accumulating :
RMS error | traces ©
at best « '
0.3 -
0.2 4 replacing
traces
0 0.2 0.4 0.6 0.8 1

31

Why Replacing Traces?

@ Replacing traces can significantly speed learning

@ They can make the system perform well for a broader set of
parameters

@ Accumulating traces can do poorly on certain types of tasks

wrong wrong wrong wrong wrong

é é g é gﬂ.
right right right right right

Why is this task particularly onerous for
accumulating traces?

37

Interim TD(A) Forward View

@ Ateach time 7, you can only see the ®* o o éiﬂ
data up to time ¢ O 0O O Sirt
@ so you must bootstrap at time ¢ -\ ¢ ¢ 8 éii
@ However you can go back and redo o Q@ O Seee
all previous updates at times k < ¢ SRR .
e TD()\) is equivalent to this © é P
(1= X)\° S,

@ exactly under off-line updating

@ approximately under online

True Online TD())

@ A new algorithm that more truly achieves the goals of
TD(A) under online updating

@ achieves the interim TD(\) forward view exactly,
even under online updating, for any A, y
@ Not restricted to episodic problems
e Extends immediately to function approximation

@ Appears to perform better than both accumulating and
replacing traces (“enhanced” traces)

@ Tabular version:
Ei(s) =vAEi—1(s) 4+ (if s =5¢) 1 — ayAEi_1(s)

0t = Rey1 +yVe(Se41) — Vem1(St)
Vit1(s) = Vi(s) + adrEx(s) + (if s = Sp) a(Vi—1(S:) — Vi(St))

34

More Replacing Traces

@ Off-line replacing trace TD(1) 1s 1dentical to first-visit
MC

@ Extension to action-values:

@ When you revisit a state, what should you do with
the traces for the other actions?

@ Perhaps you should set them to zero:
1 if s=5; and a=A;;

Ei(s,a) =< 0 if s=8S; and a # A;; for all s,a
YAE,_1(s,a) if s #S;.

@ But it 1s not clear that this 1s a good 1dea in all
35

Implementation Issues with Traces

@ Could require much more computation
@ But most eligibility traces are VERY close to zero
@ Really only need to update those

e In practice increases computation by only a small
multiple

36

Variable A

e Can generalize to variable A

_ V)\tEt—l(S) if s7# .5
Et(S) o { /y)\tEt—l(S) + 1 if S:St

@ Here A 1s a function of time
@ Could define

A = A(s,) or A = X7

37

Conclusions regarding Eligibility Traces

@ Provide an efficient, incremental way to combine Monte
Carlo (MC) and temporal-difference (TD) learning
methods

@ Includes advantages of MC (can deal with lack of
Markov property)

@ Includes advantages of TD (using TD error,
bootstrapping)

@ Can achieve MC behavior even on non-episodic
problems

e Can significantly speed learning

e Extends to control in on-policy (Sarsa(A)) and semi-off-
policy (Q(A)) forms

@ Three varieties: accumulating, replacing, and new
3K

@ questions?

30

TD()) algorithm/model/neuron

States Y AN S
or l l I .
Error

Features ! I‘}\

Reward

2

l

Value of state
or action

D Eligibilit
Error Trace.

