
Deep Multiagent Reinforcement
Learning for Partially Observable

Parameterized Environments
Peter Stone

Department of Computer Science
The University of Texas at Austin

Joint work with Matthew Hausknecht

1

Hausknecht and Stone, UT Austin

Intelligent decision making is at the heart of AI.

Motivation

2

Hausknecht and Stone, UT Austin

Outline
1. Background

2. Recurrent Q-Learning for partially observable
MDPs

3. Deep Multiagent RL in Half-Field-Offense

4. Future Work

3

Hausknecht and Stone, UT Austin

Markov Decision Process

Action at

State st

Reward rt

Markov Property ensures st+1 depends only on st

Learning an optimal policy π* requires no memory
4

Hausknecht and Stone, UT Austin

Partially Observable MDP
(POMDP)

Action at

Observation ot

Reward rt

Observations provide noisy or incomplete information

Memory may help to learn a better policy
5

Hausknecht and Stone, UT Austin

Reinforcement Learning
Reinforcement Learning provides a general
framework for sequential decision making.

Objective: Learn a policy that maximizes discounted
sum of future rewards.

Deterministic policy π is a mapping from states/
observations to actions.

For each encountered state/observation, what is the
best action to perform.

6

Hausknecht and Stone, UT Austin

Q-Value Function
Estimates the expected return from a given state-
action:

Answers the question: “How good is action a from
state s.”

Optimal Q-Value function yields an optimal policy.

Q⇡(s, a) = E
⇥
rt+1 + �rt+2 + �2rt+3 + . . . |s, a

⇤

7

Hausknecht and Stone, UT Austin

Deep Neural Network

Parametric model with stacked
layers of representation.

Powerful, general purpose function
approximator.

Parameters optimized via
backpropagation.

Input

Output

✓

8

Hausknecht and Stone, UT Austin

Outline
1. Background

2. Recurrent Q-Learning for partially observable
MDPs

3. Deep Multiagent RL in Half-Field-Offense

4. Future Work

9

Hausknecht and Stone, UT Austin

Atari Environment

Action at

Observation ot

Reward rt

Resolution 160x210x3
18 discrete actions

Reward is change in game score

10

Hausknecht and Stone, UT Austin

Atari: MDP or POMDP?

Depends on the number
game screens used in the
state representation.

Many games PO with a
single frame.

11

Hausknecht and Stone, UT Austin

Neural network estimates Q-Values
Q(s,a) for all 18 actions:

Learns via temporal difference:

Accepts the last 4 screens as input.

Deep Q-Network (DQN)

Convolution 1

Convolution 2

Convolution 3

Fully Connected

Fully Connected

Q-Values

Q(s|✓) = (Qs,a1 . . . Qs,an)

yi = rt + �max(Q(st+1|✓))

12

Li(✓i) = E(st,at,rt,st+1)⇠D

h�
yi �Q(st|✓i)

�2i

Hausknecht and Stone, UT Austin

Flickering Atari
How well does DQN perform on POMDPs?

Induce partial observability by stochastically
obscuring the game screen

Game state must be inferred from past observations

ot =

⇢
st with p =

1
2

< 0, . . . , 0 > otherwise

13

Hausknecht and Stone, UT Austin

DQN Pong

True Game Screen Observed Game Screen
14

Hausknecht and Stone, UT Austin

DQN Flickering Pong

True Game Screen Observed Game Screen
15

Hausknecht and Stone, UT Austin

Uses a Long Short Term Memory
(LSTM) to selectively remember past
game screens.

Architecture identical to DQN except:
1. Replaces FC layer with LSTM
2. Single frame as input each

timestep

Trained end-to-end using BPTT for
last 10 timesteps.

Deep Recurrent Q-Network

Convolution 1

Convolution 2

Convolution 3

LSTM

Fully Connected

Q-Values

16

Hausknecht and Stone, UT Austin

DRQN Flickering Pong

True Game Screen Observed Game Screen
17

Hausknecht and Stone, UT Austin18

Hausknecht and Stone, UT Austin

LSTM infers velocity

19

Hausknecht and Stone, UT Austin

DRQN Frostbite

20

21

Hausknecht and Stone, UT Austin

Extensions
DRQN has been extended in several ways:

• Addressable Memory: Control of Memory, Active
Perception, and Action in Minecraft; Oh et al. in
ICML ’16

• Continuous Action Space: Memory Based Control
with Recurrent Neural Networks; Heess et al., 2016

[Deep Recurrent Q-Learning for Partially Observable
MDPs, Hausknecht et al, 2015; ArXiv]

22

Hausknecht and Stone, UT Austin

Outline
1. Background

2. Recurrent Q-Learning for partially observable
MDPs

3. Deep Multiagent RL in Half-Field-Offense

4. Future Work

23

Hausknecht and Stone, UT Austin

Half Field Offense
Cooperative multiagent soccer domain built on the
libraries used by the RoboCup competition

Objective: Learn a goal scoring policy for the offense
agents

Features continuous actions, partial observability, and
opportunities for multiagent coordination

24

Hausknecht and Stone, UT Austin

Half Field Offense

25

26

27

State Action Spaces

58 continuous state features encoding
distances and angles to points of interest

Parameterized-Continuous Action Space:  
Dash(direction, power)  
Turn(direction) 
Tackle(direction)  
Kick(direction, power)

Choose one discrete action + parameters
every timestep

28

Hausknecht and Stone, UT Austin

Exploration is Hard

29

Hausknecht and Stone, UT Austin

Reward Signal

rt = -ᵂd(Agent, Ball) + Ikick + -3ᵂd(Ball, Goal) + 5IGoal

Go to Ball Kick to Goal

30

With only goal-scoring reward, agent never learns
to approach the ball or dribble.

Deep Deterministic
Policy Gradients

Model-free Deep Actor Critic
architecture [Lillicrap ’15]

Actor learns a policy π, Critic
learns to estimate Q-values

Actor outputs all 6 possible
parameters.

at = max(4 actions) + associated
parameter(s)

State

4 Actions 6 Parameters

1024

ReLU

256

ReLU

512

ReLU

128

ReLU

Q-Value

1024

ReLU

256

ReLU

512

ReLU

128

ReLU Actor

Critic

31

Training
Critic trained using temporal
difference:

Actor trained via Critic gradients:

State

ᵘθμ

4 Actions 6 Parameters

ᵘθQ

Q-Value

Actor

Critic

auQ
(s
,a
)L = ||Q(st, µ(st)|✓Q)� y||22

y = rt + �(Q(st+1, µ(st+1)|✓Q))

r✓µµ(s) = raQ(s, a|✓Q)r✓µµ(s|✓µ)

32

Hausknecht and Stone, UT Austin

Bounded Action Space
HFO’s continuous parameters are bounded

Dash(direction, power)
Turn(direction)
Tackle(direction)
Kick(direction, power)

Direction in [-180,180], Power in [0, 100]

Exceeding these ranges results in no action

If DDPG is unaware of the bounds, it will invariably
exceed them

33

Hausknecht and Stone, UT Austin

We examine 3 approaches for bounding the DDPG’s
action space:

1. Squash Gradients

2. Zero Gradients

3. Invert Gradients

Bounded DDPG

34

Hausknecht and Stone, UT Austin

Squashing Gradients
1. Use Tanh non-linearity to bound parameter output

2. Rescale into desired range

35

Hausknecht and Stone, UT Austin

Squashing Gradients

36

Hausknecht and Stone, UT Austin

Each continuous parameter has a range: [pmin, pmax]

Let p denote current value of parameter, and the
suggested gradient.

Then:

Zeroing Gradients

rp =

(
rp if p

min

< p < p
max

0 otherwise

rp

37

Hausknecht and Stone, UT Austin

Zeroing Gradients

38

Hausknecht and Stone, UT Austin

Inverting Gradients

rp = rp ·
(
(p

max

� p)/(p
max

� p
min

) if rp suggests increasing p

(p� p
min

)/(p
max

� p
min

) otherwise

For each parameter:

Allows parameters to approach the bounds of the ranges
without exceeding them

Parameters don’t get “stuck” or saturate

39

Hausknecht and Stone, UT Austin

Inverting Gradients

40

Hausknecht and Stone, UT Austin

Results

41

Hausknecht and Stone, UT Austin

Results
Scoring Avg. Steps
Percent to Goal

DDPG1 1.0 108.0
DDPG2 .99 107.1
DDPG3 .98 104.8
DDPG4 .96 112.3

Helios’ Champion .96 72.0
DDPG5 .94 119.1
DDPG6 .84 113.2
SARSA .81 70.7
DDPG7 .80 118.2

42

[Deep Reinforcement Learning in Parameterized Action
Space, Hausknecht and Stone, in ICLR ‘16]

Hausknecht and Stone, UT Austin

Deep Multiagent RL
Can multiple Deep RL agents cooperate to achieve a
shared goal?

Examine several baseline architectures:

Decentralized: Independent agents

Centralized: Single controller for multiple agents

Parameter Sharing: Layers shared between agents

43

Hausknecht and Stone, UT Austin

Centralized

Both agents are controlled
by a single DDPG

State & Action spaces are
concatenated

Learning is more
challenging for this reason

4 Actions 6 Parameters

1024

ReLU

256

ReLU

512

ReLU

128

ReLU

Q-Value

1024

ReLU

256

ReLU

512

ReLU

128

ReLU

Actor

Critic

State

6 Parameters4 Actions

State

44

45

Parameter
Sharing

Shared weights between layers in
Actor networks. Separate sharing
between Critic networks.

Reduces total number of parameters!

Encourages both agents to participate
even though 2v0 is solvable by a
single agent.

State

4 Actions 6 Parameters

256

ReLU

128

ReLU

Q-Value

256

ReLU

128

ReLU

4 Actions 6 Parameters

256

ReLU

128

ReLU

Q-Value

256

ReLU

128

ReLU

State

1024

ReLU

512

ReLU

1024

ReLU

512

ReLU

Critics

Actors

46

47

49

Hausknecht and Stone, UT Austin

Related Work
• Multiagent Cooperation and Competition with Deep

Reinforcement Learning; Tampuu et. al, 2015

• Learning to Communicate to Solve Riddles with
Deep Distributed Recurrent Q-Networks; Foerster
et al., 2016

• Learning to Communicate with Deep Multi-Agent
Reinforcement Learning; Foerster et al., 2016

50

Hausknecht and Stone, UT Austin

Thanks!

State

4 Actions 6 Parameters

1024

ReLU

256

ReLU

512

ReLU

128

ReLU

Q-Value

1024

ReLU

256

ReLU

512

ReLU

128

ReLU Actor

CriticConvolution 1

Convolution 2

Convolution 3

LSTM

Fully Connected

Q-Values

51

