CS394R
Reinforcement Learning: Theory and Practice

Peter Stone

Department of Computer Science
The University of Texas at Austin
Good Morning Colleagues

• Are there any questions?
Logistics

• First 3 programming assignments past due
Logistics

- First 3 programming assignments past due
 - Until literature survey is due: 1 point off
 - Until last day of class: 2 points off
 - After last day of class: 3 points off
 - After final project is due: 4 points off
Logistics

- First 3 programming assignments past due
 - Until literature survey is due: 1 point off
 - Until last day of class: 2 points off
 - After last day of class: 3 points off
 - After final project is due: 4 points off

- Complete the class survey by Wed. at 5pm
Logistics

- First 3 programming assignments past due
 - Until literature survey is due: 1 point off
 - Until last day of class: 2 points off
 - After last day of class: 3 points off
 - After final project is due: 4 points off

- Complete the class survey by Wed. at 5pm

- Literature review due November 10th
Logistics

- First 3 programming assignments past due
 - Until literature survey is due: 1 point off
 - Until last day of class: 2 points off
 - After last day of class: 3 points off
 - After final project is due: 4 points off

- Complete the class survey by Wed. at 5pm

- Literature review due November 10th
 - At least 10 refs
Logistics

- First 3 programming assignments past due
 - Until literature survey is due: 1 point off
 - Until last day of class: 2 points off
 - After last day of class: 3 points off
 - After final project is due: 4 points off

- Complete the class survey by Wed. at 5pm

- Literature review due November 10th
 - At least 10 refs
 - Also reiterate proposal; be more concrete; answer the biggest questions; preliminary results
Logistics

- First 3 programming assignments past due
 - Until literature survey is due: 1 point off
 - Until last day of class: 2 points off
 - After last day of class: 3 points off
 - After final project is due: 4 points off

- Complete the class survey by Wed. at 5pm

- Literature review due November 10th
 - At least 10 refs
 - Also reiterate proposal; be more concrete; answer the biggest questions; preliminary results
 - Partial draft for final project
Overview

- RMax: model-based learning in polynomial time
Overview

- RMax: model-based learning in polynomial time
 - High-level idea (pdf)
Overview

- RMax: model-based learning in polynomial time
 - High-level idea (pdf)
 - Q-learning vs. RMax (videos)
Overview

• RMax: model-based learning in polynomial time
 – High-level idea (pdf)
 – Q-learning vs. RMax (videos)

• Rmax not built to be practical
Overview

● RMax: model-based learning in polynomial time
 – High-level idea (pdf)
 – Q-learning vs. RMax (videos)

● Rmax not built to be practical
 – Built to be provably convergent
Overview

- RMax: model-based learning in polynomial time
 - High-level idea (pdf)
 - Q-learning vs. RMax (videos)

- Rmax not built to be practical
 - Built to be provably convergent

- MBIE: more practical
Overview

- RMax: model-based learning in polynomial time
 - High-level idea (pdf)
 - Q-learning vs. RMax (videos)

- Rmax not built to be practical
 - Built to be provably convergent

- MBIE: more practical

- Fitted R-Max: Extend to continuous state space (pdf)
Discussion

What’s more interesting? Theoretically grounded algorithms? Or algorithms that work in practice?
Discussion

- What’s more interesting? Sample complexity? Or average loss?