CS394R
Reinforcement Learning: Theory and Practice

Scott Niekum and Peter Stone

Department of Computer Science
The University of Texas at Austin
BE a reinforcement learner
BE a reinforcement learner

- You, as a class, act as a learning agent
BE a reinforcement learner

- You, as a class, act as a learning agent
- **Actions**: Wave, Stand, Clap
BE a reinforcement learner

- You, as a class, act as a learning agent
- Actions: Wave, Stand, Clap
- Observations: colors, reward
BE a reinforcement learner

- You, as a class, act as a learning agent
- **Actions**: Wave, Stand, Clap
- **Observations**: colors, reward
- **Goal**: Find an optimal *policy*
BE a reinforcement learner

- You, as a class, act as a learning agent
- **Actions**: Wave, Stand, Clap
- **Observations**: colors, reward
- **Goal**: Find an optimal *policy*
 - Way of selecting actions that gets you the most reward
How did you do it?
How did you do it?

- What is your policy?
- What does the world look like?
How did you do it?

- What is your policy?
- What does the world look like?
Formalizing What Just Happened

Knowns:
Formalizing What Just Happened

Knowns:

- \(\mathcal{O} = \{ \text{Blue}, \text{Red}, \text{Green}, \text{Black}, \ldots \} \)
- Rewards in \(\mathbb{R} \)
- \(\mathcal{A} = \{ \text{Wave}, \text{Clap}, \text{Stand} \} \)
Formalizing What Just Happened

Knouns:

- $\mathcal{O} = \{\text{Blue, Red, Green, Black}, \ldots\}$
- Rewards in \mathbb{R}
- $\mathcal{A} = \{\text{Wave, Clap, Stand}\}$
- $o_0, a_0, r_0, o_1, a_1, r_1, o_2, \ldots$
Formalizing What Just Happened

Knowns:

- $O = \{\text{Blue, Red, Green, Black}, \ldots\}$
- Rewards in \mathbb{R}
- $A = \{\text{Wave, Clap, Stand}\}$

$\begin{array}{c}
o_0, a_0, r_0, o_1, a_1, r_1, o_2, \ldots \\
\end{array}$

Unknowns:
Formalizing What Just Happened

Knouns:
- \(\mathcal{O} = \{\text{Blue, Red, Green, Black, \ldots}\} \)
- Rewards in \(\mathbb{R} \)
- \(\mathcal{A} = \{\text{Wave, Clap, Stand}\} \)

\[
\begin{array}{c}
o_0, a_0, r_0, o_1, a_1, r_1, o_2, \ldots \\
\end{array}
\]

Unknowns:
- \(\mathcal{S} = 4 \times 3 \) grid
- \(\mathcal{R} : \mathcal{S} \times \mathcal{A} \mapsto \mathbb{R} \)
- \(\mathcal{T} = \mathcal{S} \mapsto \mathcal{O} \)
- \(\mathcal{P} : \mathcal{S} \times \mathcal{A} \mapsto \mathcal{S} \)
Formalizing What Just Happened

Knowns:
- \(\mathcal{O} = \{ \text{Blue, Red, Green, Black, ...} \} \)
- Rewards in \(\mathbb{R} \)
- \(\mathcal{A} = \{ \text{Wave, Clap, Stand} \} \)

Unknowns:
- \(S = 4 \times 3 \) grid
- \(R : S \times \mathcal{A} \mapsto \mathbb{R} \)
- \(T = S \mapsto \mathcal{O} \)
- \(P : S \times \mathcal{A} \mapsto S \)

\(o_0, a_0, r_0, o_1, a_1, r_1, o_2, \ldots \)

\(s_0, o_0, a_0, r_0, s_1, o_1, a_1, r_1, s_2, o_2, \ldots \)
Formalizing What Just Happened

Knowns:
- $O = \{\text{Blue, Red, Green, Black, \ldots}\}$
- Rewards in \mathbb{R}
- $A = \{\text{Wave, Clap, Stand}\}$

Unknowns:
- $S = 4 \times 3$ grid
- $R : S \times A \mapsto \mathbb{R}$
- $T = S \mapsto O$
- $P : S \times A \mapsto S$

\[
o_i = T(s_i)
\]
Formalizing What Just Happened

Knowns:
- $\mathcal{O} = \{\text{Blue, Red, Green, Black, . . .}\}$
- Rewards in \mathbb{R}
- $\mathcal{A} = \{\text{Wave, Clap, Stand}\}$

 $o_0, a_0, r_0, o_1, a_1, r_1, o_2, \ldots$

Unknowns:
- $S = 4 \times 3$ grid
- $\mathcal{R} : S \times \mathcal{A} \mapsto \mathbb{R}$
- $\mathcal{T} = S \mapsto \mathcal{O}$
- $\mathcal{P} : S \times \mathcal{A} \mapsto S$

 $s_0, o_0, a_0, r_0, s_1, o_1, a_1, r_1, s_2, o_2, \ldots$

$o_i = \mathcal{T}(s_i) \quad r_i = \mathcal{R}(s_i, a_i)$
Formalizing What Just Happened

Knowns:

- $O = \{\text{Blue, Red, Green, Black, \ldots}\}$
- Rewards in \mathbb{R}
- $A = \{\text{Wave, Clap, Stand}\}$

Unknows:

- $S = 4 \times 3$ grid
- $R : S \times A \mapsto \mathbb{R}$
- $T = S \mapsto O$
- $P : S \times A \mapsto S$

\[
o_i = T(s_i) \quad r_i = R(s_i, a_i) \quad s_{i+1} = P(s_i, a_i)
\]
This Course

- Reinforcement Learning theory (start)
This Course

- Reinforcement Learning theory (start)
- Reinforcement Learning in practice (end)
The Big Picture

- AI
The Big Picture

- AI \rightarrow ML
The Big Picture

- AI \rightarrow ML \rightarrow RL
The Big Picture

- AI \rightarrow ML \rightarrow RL

- Types of Machine Learning
The Big Picture

- AI \rightarrow ML \rightarrow RL

- Types of Machine Learning

 Supervised learning: learn from labeled examples
The Big Picture

- AI \rightarrow ML \rightarrow RL

- Types of Machine Learning
 - **Supervised learning:** learn from labeled examples
 - **Unsupervised learning:** cluster unlabeled examples
The Big Picture

- AI \rightarrow ML \rightarrow RL

- Types of Machine Learning

 Supervised learning: learn from labeled examples
 Unsupervised learning: cluster unlabeled examples
 Reinforcement learning: learn from interaction
The Big Picture

- AI → ML → RL

- Types of Machine Learning

 Supervised learning: learn from labeled examples
 Unsupervised learning: cluster unlabeled examples
 Reinforcement learning: learn from interaction
 - Defined by the problem
The Big Picture

- AI \rightarrow ML \rightarrow RL

Types of Machine Learning

Supervised learning: learn from labeled examples

Unsupervised learning: cluster unlabeled examples

Reinforcement learning: learn from interaction
 - Defined by the problem
 - Many approaches possible (including evolutionary)
The Big Picture

- AI \rightarrow ML \rightarrow RL

- Types of Machine Learning

 Supervised learning: learn from labeled examples
 Unsupervised learning: cluster unlabeled examples
 Reinforcement learning: learn from interaction
 - Defined by the problem
 - Many approaches possible (including evolutionary)
 - Book focuses on a particular class of approaches
Reduced Formalism

Knowns:

- $S = \{\text{Blue, Red, Green, Black, ...}\}$
- Rewards in \mathbb{R}
- $A = \{\text{Wave, Clap, Stand}\}$

$s_0, a_0, r_0, s_1, a_1, r_1, s_2, \ldots$
Reduced Formalism

Knowns:
• \(S = \{\text{Blue, Red, Green, Black, \ldots}\} \)
• Rewards in \(\mathbb{R} \)
• \(A = \{\text{Wave, Clap, Stand}\} \)

\[
\begin{array}{l}
S_0, a_0, r_0, s_1, a_1, r_1, s_2, \ldots
\end{array}
\]

Unknowns:
Reduced Formalism

Knowns:
- \(S = \{ \text{Blue, Red, Green, Black, \ldots } \} \)
- Rewards in \(\mathbb{R} \)
- \(A = \{ \text{Wave, Clap, Stand} \} \)

\[s_0, a_0, r_0, s_1, a_1, r_1, s_2, \ldots \]

Unknowns:
- \(\mathcal{R} : S \times A \mapsto \mathbb{R} \)
- \(\mathcal{P} : S \times A \mapsto S \)
Reduced Formalism

Knowns:
- $S = \{\text{Blue, Red, Green, Black, ...}\}$
- Rewards in \mathbb{R}
- $A = \{\text{Wave, Clap, Stand}\}$

Unkowns:
- $\mathcal{R} : S \times A \mapsto \mathbb{R}$
- $\mathcal{P} : S \times A \mapsto S$

$$r_i = \mathcal{R}(s_i, a_i) \quad s_{i+1} = \mathcal{P}(s_i, a_i)$$
This course

- Agent’s perspective: only **policy** under control
 - State representation, reward function given
 - Focus on policy algorithms, theoretical analyses
This course

- Agent’s perspective: only policy under control
 - State representation, reward function given
 - Focus on policy algorithms, theoretical analyses
 - Appeal: program by just specifying goals
This course

- Agent’s perspective: only policy under control
 - State representation, reward function given
 - Focus on policy algorithms, theoretical analyses
 - Appeal: program by just specifying goals
 - Practice: need to pick the representation, reward
This course

- Agent’s perspective: only **policy** under control
 - State representation, reward function given
 - Focus on policy algorithms, theoretical analyses
 - Appeal: program by just specifying goals
 - Practice: need to pick the representation, reward
 - videos
This course

● Agent’s perspective: only **policy** under control
 – State representation, reward function given
 – Focus on policy algorithms, theoretical analyses
 – Appeal: program by just specifying goals
 – Practice: need to pick the representation, reward
 – videos

● Methodical approach
 – Solid foundation rather than comprehensive coverage
This course

- Agent’s perspective: only **policy** under control
 - State representation, reward function given
 - Focus on policy algorithms, theoretical analyses
 - Appeal: program by just specifying goals
 - Practice: need to pick the representation, reward
 - videos

- Methodical approach
 - Solid foundation rather than comprehensive coverage
 - RL reading group
Available on-line
Assignments

• Join edX!
Assignments

- Join edX!
- Read Chapters 2 and 3 (and 1 if you haven’t)
Assignments

- Join edX!
- Read Chapters 2 and 3 (and 1 if you haven’t)
- Send a reading response by 5pm Monday
Assignments

● Join edX!

● Read Chapters 2 and 3 (and 1 if you haven’t)

● Send a reading response by 5pm Monday

● Start on your first programming assignment
Assignments

• Join edX!
• Read Chapters 2 and 3 (and 1 if you haven’t)
• Send a reading response by 5pm Monday
• Start on your first programming assignment