RoboCup Simulator

- **Distributed**: each player a separate client
- Server models dynamics and kinematics
- Clients receive **sensations**, send **actions**

\[
\begin{array}{c}
\text{Cycle} \quad t-1 \quad t \quad t+1 \quad t+2 \\
\end{array}
\]

Client 1

Server

Client 2

- Parametric actions: dash, turn, kick, say
- **Abstract, noisy** sensors, hidden state
 - Hear sounds from limited distance
 - See relative distance, angle to objects ahead
- \(>10^{23} \) states
- **Limited resources**: stamina
- Play occurs in **real time** (\(\sim \) human parameters)
3 vs. 2 Keepaway

- Play in a small area (20m x 20m)
- Keepers try to keep the ball
- Takers try to get the ball

Episode:
- Players and ball reset randomly
- Ball starts near a keeper
- Ends when taker gets the ball or ball goes out

Performance measure: average possession duration

Use **CMUnited-99 skills:**
- HoldBall, PassBall(k), GoToBall, GetOpen
The Keepers’ Policy Space

Example Policies

Random: HoldBall or PassBall(k) randomly

Hold: Always HoldBall

Hand-coded:

- If no taker within 10m: HoldBall
- Else If there’s a good pass: PassBall(k)
- Else HoldBall
Mapping Keepaway to RL

Discrete-time, episodic, distributed RL

- Simulator operates in discrete time steps, \(t = 0, 1, 2, \ldots \), each representing 100 msec

- Episode:
 \(s_0, a_0, r_1, s_1, \ldots, s_t, a_t, r_{t+1}, s_{t+1}, \ldots, r_T, s_T \)

- \(a_t \in \{ \text{HoldBall}, \text{PassBall}(k), \text{GoToBall}, \text{GetOpen} \} \)

- \(r_t = 1 \)

- \(V^\pi(s) = E\{T \mid s_0 = s\} \)

- Goal: Find \(\pi^* \) that maximizes \(V \) for all \(s \)
Representation

- Full soccer state
- Few continuous state variables (13)
- Sparse, coarse, tile coding
- Linear map
- Huge binary feature vector (about 400 1’s and 40,000 0’s)
- Action values
s: 13 Continuous State Variables

- 11 distances among players, ball, and center
- 2 angles to takers along passing lanes
Function Approximation: Tile Coding

• Form of sparse, coarse coding based on CMACS [Albus, 1981]

• Tiled state variables individually (13)
Policy Learning

• Learn $Q^{\pi}(s, a)$: Expected possession time

• **Linear Sarsa(λ) — each agent learns independently**
 - **On-policy method**: advantages over e.g. Q-learning
 - Not known to converge, but works (e.g. [Sutton, 1996])

• Only update when ball is kickable for **someone**: Semi-Markov Decision Process
Main Result

![Graph showing episode duration vs. hours of training time]

- **Episode Duration** (seconds)
- **Hours of Training Time** (bins of 1000 episodes)

Legend:
- **random**
- **handcoded**
- **always hold**

1 hour = 720 5-second episodes
• Preliminary: taker learning successful as well
• Also tried varying field sizes