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Environment Random Walk (Example 6.2)
Solution

Notation

Random Walk

Consider a random walk example from chapter 6:

. 0 @ 0 0 @ 0 @ 0 @ 1 .

START

Our objective is to learn value function V(s) fors € {L,A,B,C,D, E, R}

@ Matrix/vector representation of the initial state C, one step
transition probabilities, and rewards:
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@ What about two-step transition probabilities and rewards?
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A Solution (when we know the model...)

0 @ 0 0 @ 0 @ 0 @ 1

START

Two-step transition probabilities and rewards:

1 0 0 0 0 0 0 0 0 0 0 0 0 0
.5 0.25 0 .25 0 0 0 0 0 0 0 0 0 0
.25 0 .5 0 .25 0 0 0 0 0 0 0 0 0
PxP=p2= 0 .25 0 .5 0 25 0 Ry = 0 0 0 0 0 0 0
0 0 .25 0 .5 0 .25 0 0 0 0 0 0 1
0 0 0 .25 0 .25 .5 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0 0 0 0 0 0 0
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Solution
Notation

A Solution (when we know the model...)

PxpP=p2=

@ And so on...

0 ('\ 0 0 0 0 ('\ 1
START
Two-step transition probabilities and rewards:

1 0 0 0 0 0 0 0 0 0 0 0 0

.5 0.25 0 .25 0 0 0 0 0 0 0 0 0

.25 0 .5 0 .25 0 0 0 0 0 0 0 0

0 .25 0 .5 0 .25 0 R2 = 0 0 0 0 0 0

0 0 .25 0 .5 0 .25 0 0 0 0 0 0

0 0 0 .25 0 .25 5 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0
1.0 0 0 0 0 0 0 0 0 0 0 0 0 0
.833 0 0 0 0 0 .167 0 0 0 0 0 0 1
.667 0 0 0 0 0 .333 0 0 0 0 0 0 1
P> = .500 0 0 0 0 0 .500 Roo = 0 0 0 0 0 0 1
.333 0 0 0 0 0 .667 0 0 0 0 0 0 1
.167 0 0 0 0 0 .833 0 0 0 0 0 0 1
0 0 0 0 0 0 1.0 0 0 0 0 0 0 0
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Environment Random Walk (Example 6.2)
Solution
Notation

A Solution (when we know the model...)

. 0 @ 0 0 @ 0 @ 0 @ 1

START

Two-step transition probabilities and rewards:

1 0 0 0 0 0 0 0 0 0 0 0 0 0
.5 0.25 0 .25 0 0 0 0 0 0 0 0 0 0
.25 0 .5 0 .25 0 0 0 0 0 0 0 0 0
PXP:P2: 0 .25 0 .5 0 25 0 R2: 0 0 0 0 0 0 0
0 0 .25 0 .5 0 .25 0 0 0 0 0 0 1
0 0 0 .25 0 .25 .5 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0 0 0 0 0 0 0
@ And so on...
1.0 0 0 0 0 0 0 0 0 0 0 0 0 0
.833 0 0 0 0 0 .167 0 0 0 0 0 0 1
.667 0 0 0 0 0 .333 0 0 0 0 0 0 1
P> = .500 0 0 0 0 0 .500 Roo = 0 0 0 0 0 0 1
.333 0 0 0 0 0 .667 0 0 0 0 0 0 1
.167 0 0 0 0 0 .833 0 0 0 0 0 0 1
0 0 0 0 0 0 1.0 0 0 0 0 0 0 0

o Which implies the following value function
V= [ 0 .167 .333 .500 .667 .833 O ]
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B —0O0—00—00—00—0—N

START

a featurizer ¢(x) maps states to feature vectors

o For a single-state-per-feature representation, ¢(x) , C is represented
by¢(C):[0 0 01 0O 0]

Suppose L, C, R represeted by [1,0,0] [0,1,0], and [0,0,1] repspectively.
What will be representation of states A and B if we interpolate linearly?
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Environment Random Walk (Example 6.2)
Solution
Notation

Notation

B —0O0—00—00—00—0—N

START

a featurizer ¢(x) maps states to feature vectors

o For a single-state-per-feature representation, ¢(x) , C is represented
by¢(C):[0 0 01 0O 0]

Suppose L, C, R represeted by [1,0,0] [0,1,0], and [0,0,1] repspectively.
What will be representation of states A and B if we interpolate linearly?

o[ % 1 oJad[} 3 0]
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Notation

Notation

0 @ 0 @ 0 @ 0 @ 0 @ 1

START

How do we construct feature's eligibility vector Z7

Suppose we start in state C at time t = 1 and transition to B at time
t = 2. What are Z; and Z, for some general A and
single-state-per-feature ¢(x) 7 [Zey1 = A\Z: + ¢(x)]
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Environment

Notation

Notation

0 @ 0 @ 0 @ 0 @ 0 @ 1

START

How do we construct feature's eligibility vector Z7

Suppose we start in state C at time t = 1 and transition to B at time
t = 2. What are Z; and Z, for some general A and
single-state-per-feature ¢(x) 7 [Zey1 = A\Z: + ¢(x)]

ozlz[o 00 1 0 0 O]andZZ[O 0 1 1xA 0 0 o]
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Environment Rando xample 6.2)

Notation

More Notation

0 @ 0 @ 0 @ 0 @ 0 @ 1

START

@ [ a coeficient vector for which V(x) = 8. ¢(x). For the example
above: g = [ 0 .167 .333 .500 .667 .833 0 ]T and
5

s0=[0 0 0 10 0 0] = v©O=.
@ One step TD error

0 0 B1

0 0 B2

0 1 B3
R+(o(C)—o(B) B=0+(| L [ =] 0 )T | Bs | =—Bs+5s

0 0 Bs

0 0 Be

0 0 Br

Yaroslav Rosokha Least Squares Temporal Difference Learning



Algorithm
Example

TD(A) for approximate policy evaluation:
Given: e a simulation model for a proper policy = in MDP X;
o a featurizer ¢ : X — RX mapping states to feature vectors, ¢)(END) def s
e a parameter A € [0,1]; and

® a sequence of stepsizes a;, s, ... for incremental coefficient updating.
OQutput: a coefficient vector 3 for which V7 (z) = 3 - ¢(z).
Set 3 := 0 {or an arbitrary initial estimate), t := 0.
for n:=1,2,... do: {

Set 4 := 0.
Choose a start state 2, € X.
Set zy := @(xy).
while z; # END, do: {
Simulate one step of the process, producing a reward R; and next state zs4:.
Set & 1= & + 24 (R + (B(ze41) — d{21)) T B).
Set z¢r1 = Az + O{Zeg1)-
Sett:=t+1.

}
Set B:= 8+ a,d.

Figure 1. Ordinary TD(%) for linearly approximating the undiscounted value function of a fixed proper policy.
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Algorithm
Example

Suppose A = .5, @« = .1, and suppose during first two episodes you only
move to the right.

while z; # END, do: {

@ What will be the value of ¢ Simulate one step of the process, producing a reward
. Set & := 6 + z; (Ry + (B(x141) — dl2))TB).
and Z after: Set, zpr1 = Az¢ + P(Te41)-
o one step? two steps? ) Sett:=t+1.
three steps? Set B:= B+ and.
@ What will be the value of 3
after:
o first episode? second
episode?
0 0 0 0 0 1
m—0 O—0O—00—HN

START
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Algorithm
Example

LSTD(X) for approximate policy evaluation:
Given: a simulation model, featurizer, and X as in ordinary TD()).
(No stepsize schedules or initial estimates of 8 are necessary.)
Qutput: a coefficient vector 3 for which V7 (z) = - ¢(z).
Set A:=0,b:=0, t:=0.
forn:=1,2,... do: {
Choose a start state z; € X.
Set z; := p(z).
while z; # END, do: {
Simulate one step of the chain, producing a reward R, and next state ;..
Set A = A + z,(¢(¢) — P(we+1))T- /* outer product */
Set b:=b + z;R;.
Set zy41 1= Az + ¢(i41).
Set t:=t+ 1.

Whenever updated coefficients are desired: Set 8:= A~'b. /* Use SVD. */
}

Figure 2. A least-squares version of TD()) (compare figure 1). Note that A has dimension K x K, and b, 3, z,
and ¢ (x) all have dimension K x 1.
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Algorithm
Example

Suppose A =0, a = .1, and suppose during first two episodes you only
move to the right.

while z; # END, do: {

@ What will be the value of Z, Simulate one step of the chain, producing a reward
. Set A := A + z(p(x) — Pwe+1))T. /* o
A, and b after: St b bR
o one step? two steps? Set zuy1 1= Moy + B(@1).
. . Set t:=t+ 1.
o first episode? second }
episode?
0 0 0 0 0 1
m—0O0—0O—0O0—00—0—N
START
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Algorithm
LSTD Example

TD vs LSTD: RMS error

A=.5

Which one does better?

. 0 @ 0 @ 0 @ 0 @ 0 @ 1 .
START
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Algorithm
LSTD Example

TD vs LSTD: RMS error
A=.5

Which one does better?

RMS error of value function over all states
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Algorithm
LSTD Example

TD vs LSTD: RMS error

A=.5

Which one does better?

RMS error of value function over all states
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Episode

("]
@ What if we change A to .17

. 0 @ 0 @ 0 @ 0 @ 0 @ 1 .
START
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Algorithm
LSTD Example

TD vs LSTD: RMS error

A=5vsA=.1

RMS error of value function over all states

05 ' : |
TD(5)
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Algorithm
LSTD Example

TD vs LSTD: time performance

Suppose we vary number of intermediate states:

from

B —0O0—00—00—00—0—N

START
to
0 0 0 0 0 0 0 1
R E— - -« - <> - - I
START

Which one is faster? More accurate?
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Example

LSTD

TD vs LSTD: time performance

Time Performance
0.035 . . : . . | i

LSTD with beta calculation o
0.025

0.02
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Average Seconds Per Episode

0.005F

|
5 10 15 20 25 30 35 40 45
Number of States
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