CS394R
Reinforcement Learning: Theory and Practice

Peter Stone
Department of Computer Science
The University of Texas at Austin
Good Afternoon Colleagues

• Are there any questions?
Helicopter Control

- State: position, orientation, velocity, angular vels
- Actions: Settings of the 4 or 5 controls
- Goal: Hover
Helicopter Control

- State: position, orientation, velocity, angular vels
- Actions: Settings of the 4 or 5 controls
- Goal: Hover

How would you formulate the problem “by the book”?
Helicopter Control

- State: position, orientation, velocity, angular vels
- Actions: Settings of the 4 or 5 controls
- Goal: Hover

How would you formulate the problem “by the book”? Could you implement that? Why or why not?
Helicopter Control

- State: position, orientation, velocity, angular vels
- Actions: Settings of the 4 or 5 controls
- Goal: Hover

How would you formulate the problem “by the book”?
Could you implement that? Why or why not?
At a high level, what do they do instead?
Helicopter Control

- State: position, orientation, velocity, angular vels
- Actions: Settings of the 4 or 5 controls
- Goal: Hover

How would you formulate the problem “by the book”? Why or why not?

At a high level, what do they do instead?
- Collect a small amount of human expert data
- Use that to train a 1-step model (simulator)
- Determine the optimal policy in the simulator
- Fly it!
Helicopter Control

- State: position, orientation, velocity, angular vels
- Actions: Settings of the 4 or 5 controls
- Goal: Hover

How would you formulate the problem “by the book”? Why or why not?

At a high level, what do they do instead?
- Collect a small amount of human expert data
- Use that to train a 1-step model (simulator)
- Determine the optimal policy in the simulator
- Fly it!

Would this approach work on the Aibo walking task?
• Why quadratic reward (p. 5)?
Ng paper

- Why quadratic reward (p. 5)?
- PEGASUS - how does it help policy evaluation?
Ng paper

- Why quadratic reward (p. 5)?
- PEGASUS - how does it help policy evaluation?
 - General question: is policy good or lucky?
Ng paper

- Why quadratic reward (p. 5)?
- PEGASUS - how does it help policy evaluation?
 - General question: is policy good or lucky?
 - Use same random samples to evaluate each policy
Ng paper

- Why quadratic reward (p. 5)?
- PEGASUS - how does it help policy evaluation?
 - General question: is policy good or lucky?
 - Use same random samples to evaluate each policy
- How does he do policy optimization?
Why quadratic reward (p. 5)?

PEGASUS - how does it help policy evaluation?
- General question: is policy good or lucky?
- Use same random samples to evaluate each policy

How does he do policy optimization?
- Represent policy as a Neural net (Fig 2c)
Ng paper

• Why quadratic reward (p. 5)?
• PEGASUS - how does it help policy evaluation?
 − General question: is policy good or lucky?
 − Use same random samples to evaluate each policy
• How does he do policy optimization?
 − Represent policy as a Neural net (Fig 2c)
 − greedy hillclimbing over few parameters (the weights)!
Ng paper

- Why quadratic reward (p. 5)?
- PEGASUS - how does it help policy evaluation?
 - General question: is policy good or lucky?
 - Use same random samples to evaluate each policy
- How does he do policy optimization?
 - Represent policy as a Neural net (Fig 2c)
 - Greedy hillclimbing over few parameters (the weights)!
- Shaping rewards
• Why quadratic reward (p. 5)?
• PEGASUS - how does it help policy evaluation?
 – General question: is policy good or lucky?
 – Use same random samples to evaluate each policy
• How does he do policy optimization?
 – Represent policy as a Neural net (Fig 2c)
 – Greedy hillclimbing over few parameters (the weights)!
• Shaping rewards
• Topics for other courses:
 – Kalman filter (robotics)
 – Cross-validation/hold-out testing (supervised learning)
Why quadratic reward (p. 5)?

PEGASUS - how does it help policy evaluation?
- General question: is policy good or lucky?
- Use same random samples to evaluate each policy

How does he do policy optimization?
- Represent policy as a Neural net (Fig 2c)
- Greedy hillclimbing over few parameters (the weights)!

Shaping rewards

Topics for other courses:
- Kalman filter (robotics)
- Cross-validation/hold-out testing (supervised learning)

Can it generalize to adverse conditions?
Ng paper

- Why quadratic reward (p. 5)?
- PEGASUS - how does it help policy evaluation?
 - General question: is policy good or lucky?
 - Use same random samples to evaluate each policy
- How does he do policy optimization?
 - Represent policy as a Neural net (Fig 2c)
 - Greedy hillclimbing over few parameters (the weights)
- Shaping rewards
- Topics for other courses:
 - Kalman filter (robotics)
 - Cross-validation/hold-out testing (supervised learning)
- Can it generalize to adverse conditions?
- Easy problem or a powerful approach?