Batch RL Via
Least Squares Policy Iteration

Michail G. Lagoudakis and Ronald Parr
Journal of Machine Learning Research 4 (2003) 1107-1149

Alan Fern

* Based on slides by Ronald Parr

Overview

° Motivation

° LSPI
“ Derivation from LSTD

“ Experimental results

Online versus Batch RL

°* Online RL: integrates data collection and optimization

“ Select actions in environment and at the same time update
parameters based on each observed (s,a,s’,r)

° Batch RL: decouples data collection and optimization

“ First generate experience in the environment giving a data
set of state-action-reward-state pairs {(s;,a,r,s;’)}

~ Use the fixed set of experience to optimize/learn a policy

° Online vs. Batch:

“ Batch algorithms are often more “data efficient” and stable

“ Batch algorithms ignore the exploration-exploitation
problem, and do their best with the data they have

Batch RL Motivation

° There are many applications that naturally fit the batch
RL model

° Medical Treatment Optimization:

“ Input: collection of treatment episodes for an ailment giving
sequence of observations and actions including outcomes

“ Quput: a treatment policy, ideally better than current practice

°* Emergency Response Optimization:

“ Input: collection of emergency response episodes giving
movement of emergency resources before, during, and after
911 calls

“ Qutput: emergency response policy

LSPI
° LSPI is a model-free batch RL algorithm

“ Learns a linear approximation of Q-function
“ stable and efficient

“ Never diverges or gives meaningless answers

° LSPI can be applied to a dataset regardless of how
it was collected

Terminology
° S:state space, s: individual states
° R(s,a): reward for taking action a in state s
° v:discount factor

° V: state value

P(s’ | s,a) =T(s,a,s’): transition function
° Q: state-action value

Policy: 7T(s) —>a

Objective: Maximize expected, discounted return

Egy’n-

Projection Approach to Approximation
° Recall the standard Bellman equation:

V' (s)=max_ R(s,a)+ yES,P(s' s,a)V " (s")

or equivalently V" =T[V'] where T[.] is the
Bellman operator

° Recall from value iteration, the sub-optimality of a
value function can be bounded in terms of the

Bellman error: HV 3 T[V]Hoo

° This motivates trying to find an approximate value
function with small Bellman error

Projection Approach to Approximation

° Suppose that we have a space of representable value
functions

“ E.g. the space of linear functions over given features

° Let II be a projection operator for that space

“ Projects any value function (in or outside of the space) to
“closest” value function in the space

° “Fixed Point” Bellman Equation with approximation

=111,

“ Depending on space this will have a small Bellman error

° LSPI will attempt to arrive at such a value function

“ Assumes linear approximation and least-squares projection

Projected Value Iteration
° Naive Idea: try computing projected fixed point using VI

° Exact VI: (iterate Bellman backups)

Vi+1 _ T[Vl]

° Projected VI: (iterated projected Bellman backups):

I}i+1 _ H(T[I}z]]
/TN

Projects exact Bellman exact Bellman backup

backup to closest function (produced value function)
In our restricted function space

Example: Projected Bellman Backup

Restrict space to linear functions over a single feature ¢:

V(s)=w-¢(s)

Suppose just two states s, and s, with: ¢(s;)=1, ¢(s,)=2

Suppose exact back of V' gives:

TV 1(s)) =2, T[V'1(s,) =2

d(s1)=1 ¢(s,)=2

Can we represent this exact
backup in our linear space?

Example: Projected Bellman Backup

Restrict space to linear functions over a single feature ¢:

V(s)=w-¢(s)

Suppose just two states s, and s, with: ¢(s;)=1, ¢(s,)=2
Suppose exact back of V' gives:

TV (s)) =2, T[V'1(s,) =2

The backup can’t be represented via our linear function:

1&

S {Ji+l

- N Vi©(s)=1.333-¢(s)

7 =11 | |

¢ ¢ projected backup is
just least-squares fit
to exact backup

d(s1)=1 ¢(s,)=2

Problem: Stability

° Exact value iteration stability ensured by
contraction property of Bellman backups:

Vi+1 _ T[Vl]

° Is the “projected” Bellman backup a contraction:

I}i+1 _ H(T[I}z]]

Example: Sta bility Problem [Bertsekas & Tsitsiklis 1996]

Problem: Most projections lead to backups that
are not contractions and unstable

O—0

Rewards all zero, y=0.9: V* =0

Consider linear approx. w/ single feature ¢ with weight w.

T}(S) =w-@(s) Optimalw =0
since V*=0

Example: Stability Problem

(s,)=1 @ @ 0(s,)=2
Vi(s,) = w! Vi(s,) = 2w/
From V' perform projected backup for each state
TV (s)=yV'(s,) =1.8W'

T[V'1(sy) = vV (s,) = 1.8w/

Can’t be represented in our space so find w'*! that gives
least-squares approx. to exact backup

After some math we can get: w1 =1.2 w!

What does this mean?

Example: Stability Problem

Vix) y? lteration #

1 2 # S

Each iteration of Bellman backup makes approximation worse!
Even for this simple problem “projected” VI diverges.

Understanding the Problem

°* What went wrong?
“ Exact Bellman backups reduces error in maximum norm
“ Least squares (= projection) non-expansive in L, horm

“ May increase maximum norm distance

° Conclusion: Alternating value iteration and function
approximation is risky business

Overview

° Motivation

° LSPI

4 Derivation from Least-Squares Temporal Difference
Learning

“ Experimental results

How does LSPI fix these?

° LSPI performs approximate policy iteration
“ Pl involves policy evaluation and policy improvement

“ Uses a variant of least-squares temporal difference learning
(LSTD) for approx. policy evaluation [Bratdke & Barto ‘96]

° Stability:

“ LSTD directly solves for the fixed point of the approximate
Bellman equation for policy values

“ With singular-value decomposition (SVD), this is always well
defined

° Data efficiency
“ LSTD finds best approximation for any finite data set
“~ Makes a single pass over the data for each policy
“ Can be implemented incrementally

<>

OK, What’s LSTD?

° Least Squares Temporal Difference Learning

° Assumes linear value function approximation of K
features

° The ¢, are arbitrary feature functions of states

V(s)="Y Wi (s)

° Some vector notation

V(s))

V(s,)

W,

P

ACY)

¢%(Sn)

Q)==E¢1

o]

Deriving LSTD

V = (I)W assigns a value to every state

K basis functions

A

~

~

$,(s1) d,(s1)...

$1(52) P,(s2)...

~

> H# states

/

N

I is a linear function

in the column space
of ¢,...¢,, that is,

Vi=wi g+ Wy

Suppose we know value of policy
* Want: Qw ="

° Least squares weights minimizes squared error
T -1 7
w=(D b)) O)"
~—

Sometimes called pseudoinverse

° Least squares projection is then
s, T -1 7
V =0w=>0(P ' P)'d V"

~—
Textbook least squares projection operator

But we don’t know V...

° Recall fixed-point equation for policies
V= (s)=R(s,7(s)) + VES.P(S'I $,T($NV"(s")

* Will solve a projected fixed-point equation:

yr =]_[(R+yPI7”]

[R(s,,7(s,)) |

R(s,.71(s,)).

° Substituting least squares projection into this gives:

, P=

[P(s, | s,,7(s)))

P(s, |5,.7(5,) -

- P(s, |s,7(s)))]

P(s, | Sna”(sn))_

Pw = D(D D) D (R + yPDW)
* Solving forw: w=(P' D —yd' PO)'d'R

Almost there...

w= (D' P -yd"PO)"'®'R

° Matrix to invert is only K x K

° But...
~ Expensive to construct matrix (e.g. P is |S|x|S])
“ We don’t know P
“ We don’t know R

Using Samples for ®

Suppose we have state transition samples of the policy
running in the MDP: {(s;,a,r,s;’)}

Idea: Replace enumeration of states with sampled states

K basis functions

A
e N

0,(s1) d,(s1)... N
04(52) P,(52)...

%
I

. SEedes

Using Samples for R

Suppose we have state transition samples of the policy
running in the MDP: {(s;,a,r,s;’)}

ldea: Replace enumeration of reward with sampled rewards

R = | . samples

Using Samples for PO

ldea: Replace expectation over next states with sampled

next states.

K basis functions

AN

-~

$1(s1") d,(s1')...
$4(52”) §,(s2’)...

> ¢’ from (s,a,r,s’)

Putting it Together
° LSTD needs to compute:
w=(® P -yd'PO)"'®'R=B"b
B=®"® - yd' (PD)
b=d'R |

from previous slide

°* The hard part of which is B the kxk matrix:

°* Both B and b can be computed incrementally for
each (s,a,r,s’) sample: (initialize to zero)

B; < B; +¢,(5)¢,(s) = y9,(s)9,(s")
by <= b, +r-¢,(s)

LSTD Algorithm

° Collect data by executing trajectories of current policy

° For each (s,a,r,s’) sample:

B; < B; +¢,(s)¢;(5) - v$,(s)p;(s")
by <= b, +r-¢,(s,a)

w<— B7'b

LSTD Summary

° Does O(k?) work per datum
“ Linear in amount of data.

° Approaches model-based answer in limit

° Finding fixed point requires inverting matrix

° Fixed point almost always exists

° Stable; efficient

Approximate Policy Iteration with LSTD

Policy Iteration: iterates between policy improvement
and policy evaluation

Idea: use LSTD for approximate policy evaluation in Pl

Start with random weights w (i.e. value function)
Repeat Until Convergence
JT(S)= gFEEdy(I}(S,W)) // policy improvement

Evaluate 7w using LSTD
m Generate sample trajectories of 7

m Use LSTD to produce new weights w
(w gives an approx. value function of 7)

What Breaks?

°* No way to execute greedy policy without a model

° Approximation is biased by current policy

“ We only approximate values of states we see when
executing the current policy

“ LSTD is a weighted approximation toward those states

° Can result in Learn-forget cycle of policy iteration
“ Drive off the road; learn that it’s bad

“ New policy never does this; forgets that it’s bad

° Not truly a batch method

“ Data must be collected from current policy for LSTD

LSPI

° LSPI is similar to previous loop but replaces LSTD
with a new algorithm LSTDQ

° LSTD: produces a value function

“ Requires sample from policy under consideration

° LSTDQ: produces a Q-function

“ Can learn Q-function for policy from any (reasonable) set
of samples---sometimes called an off-policy method

“ No need to collect samples from current policy

° Disconnects policy evaluation from data collection

“~ Permits reuse of data across iterations!
“ Truly a batch method.

Implementing LSTDQ

* Both LSTD and LSTDQ,compute: B = ®'® — A" (PD)

° But LSTDQ basis functions are indexed by actions
QW(S,CI) = Zwk °¢k(S9a)

defines greedy policy:z(s) =argmax_Q (s,a)

° For each (s,a,r,s’) sample:
B, <= B, +¢,(s,a)p.(s,a) = Ap,(s,a)p,(s",7,(s'))
b, <= b, +r-¢.(s,a) /

N

we— B'p argmax_Q (s',a)

Running LSPI

° There is a Matlab implementation available!

1. Collect a database of (s,a,r,s’) experiences
(this is the magic step)

2. Start w/random weights (= random policy)

3. Repeat
“ Evaluate current policy against database
m Run LSTDQ to generate new set of weights

m New weights imply new Q-function and hence new
policy
“ Replace current weights with new weights

° Until convergence

Results: Bicycle Riding

Watch random controller operate bike
Collect ~40,000 (s,a,r,s’) samples

Pick 20 simple basis functions (x5 actions)
Make 5-10 passes over data (Pl steps)

Reward was based on distance to goal + goal
achievement

Result:
Controller that balances and rides to goal

Bicycle Trajectories

U i . 2R R Bth iteration™ " "7 T B

: h
Starting :(crasj
Position -

200..n..“..n% é é }n..n..“..n..“..“ .n.% é

iteration - \

: : / 4th and 8th
=400 - Saiaaiiey r el FESSARS S Peeseeeeeseescssdterations T

-600

800 ; ; ; ; ; ; ;

-200 0 200 400 600 200 1000 1200

What about Q-learning?

* Ran Q-learning with same features

* Used experience replay for data efficiency

Q-learning Results

5000

3000 U 1 I 1 I I 1 I 1 I I
2500 T .
2000 T .

a

@ 1500

M

1000} - i
5001 / .
0- 1 1 1
0 500 1000 1500 2000 2500 3000 3500 4000 4500
Number of training episodes

LSPI Robustness

Average number of balancing steps

2000 2500 3000
Number of training episodes

0 500 1000 1500

3500

4000

4500

5000

Some key points
° LSPIl is a batch RL algorithm

~ Can generate trajectory data anyway you want

“ Induces a policy based on global optimization over
full dataset

° Very stable with no parameters that need
tweaking

So, what’s the bad news?

° LSPI does not address the exploration problem

“ |t decouples data collection from policy optimization
“ This is often not a major issue, but can be in some cases

° k% can sometimes be big
“ Lots of storage

“ Matrix inversion can be expensive

° Bicycle needed “shaping” rewards

° Still haven’t solved

“ Feature selection (issue for all machine learning, but RL
seems even more sensitive)

