Batch RL Via Least Squares Policy Iteration

Michail G. Lagoudakis and Ronald Parr Journal of Machine Learning Research 4 (2003) 1107-1149

Alan Fern

^{*} Based on slides by Ronald Parr

Overview

Motivation

- LSPI
 - Derivation from LSTD
 - Experimental results

Online versus Batch RL

- Online RL: integrates data collection and optimization
 - ◆ Select actions in environment and at the same time update parameters based on each observed (s,a,s',r)
- Batch RL: decouples data collection and optimization
 - ◆ First generate experience in the environment giving a data set of state-action-reward-state pairs {(s_i,a_i,r_i,s_i')}
 - Use the fixed set of experience to optimize/learn a policy
- Online vs. Batch:
 - Batch algorithms are often more "data efficient" and stable
 - ◆ Batch algorithms ignore the exploration-exploitation problem, and do their best with the data they have

Batch RL Motivation

 There are many applications that naturally fit the batch RL model

• Medical Treatment Optimization:

- ▲ <u>Input:</u> collection of treatment episodes for an ailment giving sequence of observations and actions including outcomes
- Ouput: a treatment policy, ideally better than current practice

• Emergency Response Optimization:

- Input: collection of emergency response episodes giving movement of emergency resources before, during, and after 911 calls
- Output: emergency response policy

LSPI

- LSPI is a model-free batch RL algorithm
 - Learns a linear approximation of Q-function

 - Never diverges or gives meaningless answers
- LSPI can be applied to a dataset regardless of how it was collected

Terminology

- S: state space, s: individual states
- R(s,a): reward for taking action a in state s
- γ: discount factor
- V: state value
- P(s' | s,a) = T(s,a,s'): transition function
- Q: state-action value
- Policy: $\pi(s) \rightarrow a$

Objective: Maximize expected, discounted return

$$E\left[\sum_{t=0}^{\infty} \gamma^t r_t\right]$$

Projection Approach to Approximation

Recall the standard Bellman equation:

$$V^{*}(s) = \max_{a} R(s, a) + \gamma \sum_{s'} P(s'|s, a) V^{*}(s')$$

or equivalently $V^* = T[V^*]$ where T[.] is the Bellman operator

Recall from value iteration, the sub-optimality of a value function can be bounded in terms of the Bellman error:

 $||V - T[V]||_{\infty}$

 This motivates trying to find an approximate value function with small Bellman error

Projection Approach to Approximation

- Suppose that we have a space of representable value functions
 - ♠ E.g. the space of linear functions over given features
- Let Π be a *projection* operator for that space
 - Projects any value function (in or outside of the space) to "closest" value function in the space
- "Fixed Point" Bellman Equation with approximation

$$\hat{V}^* = \prod \left(T[\hat{V}^*] \right)$$

- Depending on space this will have a small Bellman error
- LSPI will attempt to arrive at such a value function
 - Assumes linear approximation and least-squares projection

Projected Value Iteration

- Naïve Idea: try computing projected fixed point using VI
- Exact VI: (iterate Bellman backups)

$$V^{i+1} = T[V^i]$$

Projected VI: (iterated projected Bellman backups):

$$\hat{V}^{i+1} = \prod \left(T[\hat{V}^i] \right)$$

Projects exact Bellman backup to closest function in our restricted function space

exact Bellman backup (produced value function)

Example: Projected Bellman Backup

Restrict space to linear functions over a single feature ϕ :

$$\hat{V}(s) = w \cdot \phi(s)$$

Suppose just two states s_1 and s_2 with: $\phi(s_1)=1$, $\phi(s_2)=2$ Suppose exact back of Vⁱ gives:

Example: Projected Bellman Backup

Restrict space to linear functions over a single feature ϕ :

$$\hat{V}(s) = w \cdot \phi(s)$$

Suppose just two states s_1 and s_2 with: $\phi(s_1)=1$, $\phi(s_2)=2$ Suppose exact back of Vⁱ gives:

$$T[\hat{V}^i](s_1) = 2, \ T[\hat{V}^i](s_2) = 2$$

The backup can't be represented via our linear function:

Problem: Stability

 Exact value iteration stability ensured by contraction property of Bellman backups:

$$V^{i+1} = T[V^i]$$

• Is the "projected" Bellman backup a contraction:

$$\hat{V}^{i+1} = \prod \left(T[\hat{V}^i] \right)$$

Example: Stability Problem [Bertsekas & Tsitsiklis 1996]

Problem: Most projections lead to backups that are not contractions and unstable

Rewards all zero, $\gamma = 0.9$: $V^* = 0$

Consider linear approx. w/ single feature ϕ with weight w.

$$\hat{V}(s) = w \cdot \phi(s)$$
 Optimal $w = 0$ since $V^* = 0$

Example: Stability Problem

From Vⁱ perform projected backup for each state

$$T[\hat{V}^i](s_1) = \gamma \hat{V}^i(s_2) = 1.8w^i$$

$$T[\hat{V}^i](s_2) = \gamma \hat{V}^i(s_2) = 1.8w^i$$

Can't be represented in our space so find wi+1 that gives least-squares approx. to exact backup

After some math we can get: $\mathbf{w}^{i+1} = 1.2 \mathbf{w}^{i}$

What does this mean?

Example: Stability Problem

Each iteration of Bellman backup makes approximation worse! Even for this simple problem "projected" VI diverges.

Understanding the Problem

- What went wrong?
 - Exact Bellman backups reduces error in maximum norm
 - ▲ Least squares (= projection) non-expansive in L₂ norm
 - May increase maximum norm distance
- Conclusion: Alternating value iteration and function approximation is risky business

Overview

Motivation

- LSPI
 - ▲ Derivation from Least-Squares Temporal Difference Learning
 - Experimental results

How does LSPI fix these?

- LSPI performs approximate policy iteration
 - ◆ PI involves policy evaluation and policy improvement
 - ◆ Uses a variant of least-squares temporal difference learning (LSTD) for approx. policy evaluation [Bratdke & Barto '96]

• Stability:

- ▲ LSTD directly solves for the fixed point of the approximate Bellman equation for policy values
- With singular-value decomposition (SVD), this is always well defined

Data efficiency

- ▲ LSTD finds best approximation for any finite data set
- Makes a single pass over the data for each policy
- Can be implemented incrementally

OK, What's LSTD?

- Least Squares Temporal Difference Learning
- Assumes linear value function approximation of K features $\hat{V}(s) = \sum_{k} w_{k} \phi_{k}(s)$
- The ϕ_k are arbitrary feature functions of states
- Some vector notation

$$\hat{V} = \begin{bmatrix} \hat{V}(s_1) \\ \vdots \\ \hat{V}(s_n) \end{bmatrix} \quad w = \begin{bmatrix} w_1 \\ \vdots \\ w_k \end{bmatrix} \quad \phi_k = \begin{bmatrix} \phi_k(s_1) \\ \vdots \\ \phi_k(s_n) \end{bmatrix} \quad \Phi = \begin{bmatrix} \phi_1 & \cdots & \phi_K \end{bmatrix}$$

Deriving LSTD

$$\hat{V} = \Phi w$$
 assigns a value to every state

 \hat{V} is a linear function in the column space of $\phi_1...\phi_k$, that is, $\hat{V} = w_1 \cdot \phi_1 + \cdots + w_K \cdot \phi_K$

Suppose we know value of policy

• Want: $\Phi w \approx V^{\pi}$

Least squares weights minimizes squared error

$$w = (\mathbf{\Phi}^T \mathbf{\Phi})^{-1} \mathbf{\Phi}^T V^{\pi}$$

Sometimes called pseudoinverse

Least squares projection is then

$$\hat{V} = \Phi w = \Phi (\Phi^T \Phi)^{-1} \Phi^T V^{\pi}$$

Textbook least squares projection operator

But we don't know V...

Recall fixed-point equation for policies

$$V^{\pi}(s) = R(s, \pi(s)) + \gamma \sum_{s'} P(s'|s, \pi(s)) V^{\pi}(s')$$

• Will solve a projected fixed-point equation:

$$\hat{V}^{\pi} = \prod \left(R + \gamma P \hat{V}^{\pi} \right)$$

$$R = \begin{bmatrix} R(s_1, \pi(s_1)) \\ \vdots \\ R(s_n, \pi(s_n)) \end{bmatrix}, P = \begin{bmatrix} P(s_1 | s_1, \pi(s_1)) & \cdots & P(s_n | s_1, \pi(s_1)) \\ \vdots & \vdots & \vdots \\ P(s_1 | s_n, \pi(s_n)) & \cdots & P(s_1 | s_n, \pi(s_n)) \end{bmatrix}$$

Substituting least squares projection into this gives:

$$\Phi w = \Phi(\Phi^T \Phi)^{-1} \Phi^T (R + \gamma P \Phi w)$$

• Solving for w: $w = (\Phi^T \Phi - \gamma \Phi^T P \Phi)^{-1} \Phi^T R$

Almost there...

$$w = (\Phi^T \Phi - \gamma \Phi^T P \Phi)^{-1} \Phi^T R$$

- Matrix to invert is only K x K
- But...
 - ♠ Expensive to construct matrix (e.g. P is |S|x|S|)
 - ◆ We don't know P
 - We don't know R

Using Samples for Φ

Suppose we have state transition samples of the policy running in the MDP: $\{(s_i,a_i,r_i,s_i')\}$

Idea: Replace enumeration of states with sampled states

Using Samples for R

Suppose we have state transition samples of the policy running in the MDP: $\{(s_i,a_i,r_i,s_i')\}$

Idea: Replace enumeration of reward with sampled rewards

Using Samples for P Φ

Idea: Replace expectation over next states with sampled next states.

Putting it Together

LSTD needs to compute:

$$w = (\Phi^{T}\Phi - \gamma \Phi^{T}P\Phi)^{-1}\Phi^{T}R = B^{-1}b$$

$$B = \Phi^{T}\Phi - \gamma \Phi^{T}(P\Phi)$$

$$b = \Phi^{T}R$$
from previous slide

- The hard part of which is B the kxk matrix:
- Both B and b can be computed incrementally for each (s,a,r,s') sample: (initialize to zero)

$$B_{ij} \leftarrow B_{ij} + \phi_i(s)\phi_j(s) - \gamma\phi_i(s)\phi_j(s')$$
$$b_i \leftarrow b_i + r \cdot \phi_i(s)$$

LSTD Algorithm

- Collect data by executing trajectories of current policy
- For each (s,a,r,s') sample:

$$B_{ij} \leftarrow B_{ij} + \phi_i(s)\phi_j(s) - \gamma\phi_i(s)\phi_j(s')$$
$$b_i \leftarrow b_i + r \cdot \phi_i(s, a)$$

$$w \leftarrow B^{-1}b$$

LSTD Summary

- Does O(k²) work per datum
 - ▲ Linear in amount of data.
- Approaches model-based answer in limit
- Finding fixed point requires inverting matrix

- Fixed point almost always exists
- Stable; efficient

Approximate Policy Iteration with LSTD

Policy Iteration: iterates between policy improvement and policy evaluation

Idea: use LSTD for approximate policy evaluation in PI

Start with random weights w (i.e. value function)

Repeat Until Convergence

$$\pi(s) = \operatorname{greedy}(\hat{V}(s, \mathbf{w}))$$
 // policy improvement

Evaluate π using LSTD

- lacktriangle Generate sample trajectories of π
- Use LSTD to produce new weights \mathbf{w} (\mathbf{w} gives an approx. value function of π)

What Breaks?

- No way to execute greedy policy without a model
- Approximation is biased by current policy
 - We only approximate values of states we see when executing the current policy
 - ▲ LSTD is a *weighted* approximation toward those states
- Can result in Learn-forget cycle of policy iteration
 - Drive off the road; learn that it's bad
 - New policy never does this; forgets that it's bad
- Not truly a batch method
 - Data must be collected from current policy for LSTD

LSPI

- LSPI is similar to previous loop but replaces LSTD with a new algorithm LSTDQ
- LSTD: produces a value function
 - Requires sample from policy under consideration
- LSTDQ: produces a Q-function
 - ◆ Can learn Q-function for policy from any (reasonable) set of samples---sometimes called an off-policy method
 - No need to collect samples from current policy
- Disconnects policy evaluation from data collection
 - Permits reuse of data across iterations!
 - Truly a batch method.

Implementing LSTDQ

- Both LSTD and LSTDQ compute: $B = \Phi^T \Phi \lambda \Phi^T (P\Phi)$
- But LSTDQ basis functions are indexed by actions

$$\hat{Q}_w(s,a) = \sum_k w_k \cdot \phi_k(s,a)$$
 defines greedy policy: $\pi_w(s) = \arg\max_a \hat{Q}_w(s,a)$

• For each (s,a,r,s') sample:

$$B_{ij} \leftarrow B_{ij} + \phi_i(s, a)\phi_j(s, a) - \lambda \phi_i(s, a)\phi_j(s', \pi_w(s'))$$

$$b_i \leftarrow b_i + r \cdot \phi_i(s, a)$$

$$w \leftarrow B^{-1}b$$

$$\arg \max_a \hat{Q}_w(s', a)$$

Running LSPI

- There is a Matlab implementation available!
- 1. Collect a database of (s,a,r,s') experiences (this is the magic step)
- Start w/random weights (= random policy)
- 3. Repeat
 - Evaluate current policy against database
 - Run LSTDQ to generate new set of weights
 - New weights imply new Q-function and hence new policy
 - Replace current weights with new weights
 - Until convergence

Results: Bicycle Riding

- Watch random controller operate bike
- Collect ~40,000 (s,a,r,s') samples
- Pick 20 simple basis functions (x5 actions)
- Make 5-10 passes over data (PI steps)
- Reward was based on distance to goal + goal achievement
- Result: Controller that balances and rides to goal

Bicycle Trajectories

What about Q-learning?

Ran Q-learning with same features

Used experience replay for data efficiency

Q-learning Results

LSPI Robustness

Some key points

- LSPI is a batch RL algorithm
 - Can generate trajectory data anyway you want
 - Induces a policy based on global optimization over full dataset
- Very stable with no parameters that need tweaking

So, what's the bad news?

- LSPI does not address the exploration problem
 - ▲ It decouples data collection from policy optimization
 - ↑ This is often not a major issue, but can be in some cases
- k² can sometimes be big
 - Lots of storage
 - Matrix inversion can be expensive
- Bicycle needed "shaping" rewards
- Still haven't solved
 - ◆ Feature selection (issue for all machine learning, but RL seems even more sensitive)