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Logistics

• Next week - multiagent learning

• Final projects due next Thursday at the beginning of class,
but...

• 4pm Friday is when I need them to be able to look on the
way home

• So if in class on Thursday, due electronically Friday at 4pm

• Also put one hard copy outside my office by then.

• After that, considered late.

Peter Stone
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Iteration to diverge.

• Example from Koller and Parr 2000:
− 4 states: s0, s1, s2, s3

− 2 actions: R, L (10% chance of moving opposite
directions)

− Rewards of +1 in states s1 and s2

− basis functions are 1, x, x2 (mapping from sx)
− Possible functions are parabolas
− Starting with RRRR policy leads to poor approximation

(graph in paper), iterates to LLLL and oscillates
− Mainly because stationary distribution rarely visits states

s0 and s1.
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